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Shallow Turbulent Wake Flows — Momentum and Mass Transport

due to Large-scale Coherent Vortical Structures

Abstract

Shallow turbulent flows are ubiquitous in nature. Many environmental flows
can be characterized by horizontal length scales much greater than the flow
depth. Such flows are encountered in wide rivers, in estuaries and in coastal
seas, in stratified lakes and, on geophysical scale, in the stratified atmosphere
or in the ocean. Due to a large single obstacle like a small island, a disturbance
is introduced in the shallow near-equilibrium vertical shear flow. Large, pre-
dominantly two-dimensional eddies can alternately shed off from the obstacle
and advect downstream. Although an unbounded plane lateral shear flow is
inviscidly unstable, in shallow wakes due to the limited vertical extent, the
large-scale eddies are not affected and disintegrated by three-dimensional vor-
tex stretching mechanisms. By virtue of the bottom–induced vertical shear,
firstly, the disturbance can be stabilized, and secondly, the kinetic energy of
the large eddies can be dissipated.

The purpose of this project study is to characterize the mean flow and
turbulence properties of shallow turbulent wakes induced by a single cylindrical
obstacle. The mechanisms of generation and decay of 2D large-scale coherent
vortical structures will be clarified, as well as their role in the transport of
turbulent kinetic energy and of mass. The global and local stability of different
classes of shallow turbulent wakes will be analyzed, and related to experimental
data.

The experimental investigation of shallow turbulent wake flows necessitates
specially adapted measurement devices and experimental techniques, described
in Part I. Non-intrusive optical measurement techniques for flow velocity and
mass concentration had to be applied to shallow flows maintained in a newly
installed shallow flow facility. Shallow wake flows comprise a wide range of
turbulence scales introduced both by the random turbulence of the vertical
bottom–induced shear, and by the quasi-periodic motion of the transversely
sheared wake flow. In order to satisfy this duality, two different optical flow
measurement systems have been employed. A standard 2D Laser Doppler Ve-
locimetry (LDV) system allowed to obtain point-wise horizontal flow velocities
with high spatiotemporal resolution. This was complemented by an especially
designed Laser Induced Fluorescence (LIF) system, which provided measure-
ments of tracer mass concentrations. The dynamic range of the LIF system
has been extended by a non-linear LIF attenuation model. Spatial correlation
and temporal coincidence of both measurement volumes allowed to observe
also the turbulent mass fluxes with the combined LDV-LIF system. Field-wise
measurements with lower resolution provided insight in the spatial coherence
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of the large-scale quasi-periodic flow. A Particle Image Velocimetry (PIV) sys-
tem provided near-surface velocity fields. To observe depth–averaged dye tracer
concentrations, a Planar Concentration Analysis (PCA) technique has been de-
veloped employing a hydro-optical model for light scattering and absorbtion.
A specific measurement program provided a comprehensive data base for this
study, which is also employed to validate numerical analysis and flow simula-
tion tools.

The mean properties and the stochastic description of shallow wakes, as
presented in Part II, reveal a strong duality induced by the lateral and vertical
shear. The spectral energy distributions display the enstrophy cascade of 2D
turbulence at large scales and the energy cascade of 3D isotropic turbulence at
small scales; also the corresponding spectral transfer of mass variance follows
the appropriate theoretical concepts of 2D and 3D isotropic turbulence. Us-
ing a phase–resolved averaging technique, the data are decomposed into their
low-frequent quasi-periodic and high-frequent random parts, thus demonstrat-
ing the importance of the large-scale quasi-periodic motion for the balance of
turbulent kinetic energy and of scalar fluctuations. An analytical wake model,
including the influence of bottom friction, is derived from the integral conser-
vation equations for momentum deficit, volume deficit, and mass. This allows
to predict the development of the mean flow field in the self-similar far wake,
where large-scale structures are no longer dominating. Evaluation of time-mean
flow fields of laboratory flows show a near field, where shallow wakes behave
similar to unbounded plane wakes. Contrarily, in the large eddy–dominated
intermediate and in the passive far wake, the growth and decay rates diminish.
Experimental data are related to the results of linear stability analysis, and
local stability regions are identified. In contrast to unbounded plane wakes,
shallow wakes stabilize after a short distance that is comparable to the length
of the near field.

Part III elaborates the structure and dynamics of the periodic wake flow,
and stresses the significance of the large-scale eddies. From the velocity and
mass fields, provided by PIV and PCA measurements, the low-frequent quasi-
periodic parts are extracted using an adaptive phase–resolved averaging pro-
cedure. By means of a structure identification scheme based on vorticity and
shear strain, large-scale coherent vortices are educed from the quasi-periodic
velocity fields. Coherent and incoherent parts of derived flow quantities are
used to characterize the structure of vortex street-like periodic flows, and to
identify regions of turbulence production and intense mixing. A numerical par-
ticle tracking is developed to predict the mass transport on the basis of coher-
ent surface velocity fields. The incoherent fluctuations can be obtained from
small-scale turbulence models. Tornado-like secondary motions of the large 2D
vortices and its consequences on the lateral mass spreading are evidenced from
the velocity fields and transport simulations.
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Flache turbulente Nachlaufströmungen — Impuls- und Massentrans-

port durch großräumige kohärente Wirbelstrukturen

Kurzfassung

Natürliche Strömungen können vielfach als flache turbulente Scherströmungen
beschrieben werden, so in breiten Flüssen, Ästuaren, in geschichteten Seen und
Küstengewässern. Solche Strömungen weisen gegenüber den horizontalen Aus-
dehnungen eine sehr geringe Tiefe auf. Durch ein großes Hindernis wie eine
Insel wird in die flache Gleichgewichtsscherströmung eine Störung eingetra-
gen, wodurch sich großräumige Wirbelstrukturen alternierend vom Störkörper
ablösen können, die im Nachlauf eine Wirbelschleppe ausbilden. Obwohl un-
begrenzte ebene Nachlaufströmungen grundsätzlich instabil sind, werden in
flachen Strömungen die Instabilitätsmechanismen sowohl aus kinematischen
als auch aus dynamischen Gründen abgeschwächt, was zu einem geänderten
Stabiltätsverhalten flacher Nachlaufströmungen führt. Dies kann gravierende
Auswirkungen auf das Austausch- und Ausbreitungsverhalten flacher Nach-
laufströmungen haben.

Diese Studie soll dazu beitragen, flache Nachlaufströmungen genauer zu be-
schreiben und zu klassifizieren, und ihre Turbulenzeigenschaften zu erfassen.
Die Mechanismen für die Entstehung und den Zerfall von großräumigen Wir-
belstrukturen sollen ebenso untersucht werden wie der Einfluss solcher Struk-
turen auf den Energie und Stoffhaushalt der Strömung. Die globale und lokale
Stabilität unterschiedlicher Arten von flachen Nachläufen soll analysiert und
anhand von Laboruntersuchungen verifiziert werden.

Die experimentelle Untersuchung von flachen turbulenten Nachlaufströmun-
gen erfordert speziell angepasste Messeinrichtungen und Analyseverfahren, die
in Teil I behandelt werden. Berührungslose optische Messverfahren zur Er-
fassung der Strömungsgeschwindigkeiten und Stoffkonzentrationen werden auf
flache Scherströmungen angewandt, die in einer neu errichteten Flachwasser-
Versuchseinrichtung erzeugt werden. Da flache turbulente Nachläufe ein breites
Turbulenzspektrum aufweisen, welches sowohl die 3D Turbulenz aufgrund der
sohlinduzierten vertikalen Scherung als auch die großräumige periodische Be-
wegung aufgrund der horizontalen Scherung umfasst, werden zwei sich ergän-
zende optische Messverfahren eingesetzt. Mit einem gebräuchlichen 2D Laser
Doppler Anemometrie (LDA) System werden die horizontalen Geschwindig-
keitskomponenten punktweise mit hoher räumlicher und zeitlicher Auflösung
erfasst. Um Konzentrationen eines Markierstoffes zu beobachten, kommt ergän-
zend ein speziell entwickeltes Laser Induzierte Fluoreszenz (LIF) System zum
Einsatz, wobei der Messbereich durch ein nichtlineares LIF Strahlungsmodell
deutlich erweitert wird. Räumliche Korrelation und zeitliche Koinzidenz der
Messvolumen beider Lasermesssysteme erlauben die Erfassung auch der Mas-
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senflüsse mit dem kombinierten LDA-LIF. Flächige Messungen mit geringerer
Auflösung sind geeignet, die langsamen quasi-periodischen Strömungsbewe-
gungen im Nachlauf in ihrem räumlichen Zusammenhang zu quantifizieren. Ein
kommerzielles Particle Image Velocimetry (PIV) System wird adaptiert, um die
Geschwindigkeitsfelder nahe der Wasseroberfläche zu erfassen. Tiefengemittel-
te Massenkonzentrationen werden mit einer Planaren Konzentrations Analyse
(PCA) Technik unter Verwendung eines hydro-optischen Lichtabschwächungs-
modells gemessen. Mit einem genau abgestimmten Versuchsprogramm wird ei-
ne umfassende Datenbasis für dieses Projekt bereitgestellt, welches aber auch
zur Validierung von numerischen Analyse- und Simulationsverfahren verwen-
det wird.

Nach einer Betrachtung der theoretischen Konzepte sowohl der klassischen
homogenen 3D Turbulenz als auch der 2D Turbulenz wird in Teil II mit Hil-
fe spektraler Verteilungen der Geschwindigkeits- und Massenfluktuationen die
Dualität flacher turbulenter Nachlaufströmungen nachgewiesen. Die Zerlegung
der Geschwindigkeiten und Konzentrationen in ihre niederfrequenten periodi-
schen und hochfrequenten zufälligen Anteile verdeutlicht die besondere Bedeu-
tung der langsamen kohärenten Strömungsbewegung flacher Nachläufe. Zur Be-
schreibung des zeitgemittelten Strömungsfeldes wird ein analytisches Nachlauf-
model, das auch den Einfluss der Bodenreibung berücksichtigt, aus den inte-
gralen Erhaltungsgleichungen für Impulsdefizit, Volumendefizit und für Masse
hergeleitet. Dieses ermöglicht die Berechnung der longitudinalen Nachlaufent-
wicklung im selbstähnlichen Fernfeld, in dem die Dynamik großräumige Wirbel
bereits deutlich gedämpft ist. Die Auswertungen der experimentell erfassten
zeitgemittelten Strömungsfelder erlaubt die Identifizierung eines Nahfeldes, in
dem das Ausbreitungsverhalten eines flachen Nachlaufs dem eines unbegrenz-
ten 2D Nachlaufs gleicht. Dagegen sind die Wachstumsraten im von Großwir-
beln dominierten Übergangsfeld und im passiven Fernfeld stark vermindert.
Indem experimentelle Daten mit den Prognosen einer linearen Stabiltätsana-
lyse verglichen werden, können Bereiche unterschiedlicher lokaler Instabilität
identifiziert werden. Im Vergleich zu unbegrenzten 2D Nachläufen ist der kon-
vektiv instabile Bereich flacher Nachläufe stark verkürzt, der unterstromige
Abstand bis zur Stabilisierung deckt sich in etwa mit der Länge des Nahfeldes.

Die Struktur und Dynamik des kohärenten quasi-periodischen Anteils der
Nachlaufströmung wird in Teil III ebenso herausgearbeitet wie die Bedeutung
der Großwirbel für die Strömungsentwicklung. Mit einer adaptiven phasen-
aufgelösten Mittelung werden die quasi-periodischen Geschwindigkeits- und
Konzentrationsfelder aus PIV und PCA Messungen extrahiert, ein Verfahren
zur Strukturerkennungsverfahren erlaubt es, darin die großräumig-kohärenten
Wirbel genau abzugrenzen. Mit Hilfe der kohärenten und inkohärenten An-
teile abgeleiteter Strömungsgrößen werden die Strömungsprozesse in flachen
Wirbelstraßen-Nachläufen sowie die Rolle der großräumigen Wirbelstrukturen
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erklärt. Ein Numerical Particle Tracking Verfahren wird realisiert, um aus ge-
messenen quasi-periodischen Oberflächen-Geschwindigkeitsfeldern auf die tie-
fengemittelten Massenkonzentrationen schließen zu können, wobei die kleins-
kaligen 3D Fluktuationen durch geeignete Turbulenzmodelle simuliert werden.
Erneut zeigt sich der besondere Einfluss der Großwirbel, der nur durch die
Berücksichtigung auch der Tornado-artigen Sekundärströmungen zu erfassen
ist.
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1. Introduction

Shallow shear flows. Free-surface flows and open waters in the natural en-
vironment can be regarded as shallow shear flows, such as wide rivers, estuar-
ies, stratified lakes, and coastal seas. Shallow flows occur also on geophysical
scale in the stratified atmosphere or in the upper ocean. Shallow flows are
characterized by horizontal length scales much greater than the flow depth.
In environmental shallow flows vertical shear is usually introduced by bottom
friction along the fixed bed or by wind shear along the free surface, the vertical
boundary layer extends over the full flow depth.

Boundary layer shear flows can be destabilized by a sudden change in the
topography, but also by a horizontal velocity shear, or by global deceleration
of the flow. Due to a large single obstacle a disturbance can be introduced
in the shallow near-equilibrium vertical shear flow. Large, predominantly two-
dimensional eddies can alternately shed off from the obstacle, and advect down-
stream. Although an unbounded plane lateral shear flow is inviscidly unstable,
in shallow wakes due to the limited vertical extent, the large-scale eddies are
not affected by three-dimensional vortex stretching mechanisms. By virtue of
the bottom–induced vertical shear, the disturbance can be stabilized, and the
kinetic energy of the large eddies can be dissipated.

In Chapter 2, we illustrate the different types of environmental shallow shear
flows and the associated large-scale vortical structures from a compilation of
laboratory and field observations. We also report major research contributions,
and discuss the main concepts for the investigation of shallow wakes.

Shallow wake flows can be induced either by man-made obstacles (like
groynes, discharge structures, working platforms, or pylons of wind turbines)
or by natural changes in the bathymetry (like islands, headlands, or dunes).
Due to the large-scale coherent vortices introduced by the obstacle, the trans-
port and exchange processes in the base flow will be altered significantly. For
the prediction and evaluation of the impacts of water resources management or
structural engineering activities on the environmental water bodies, improved
knowledge about the processes associated with shallow wake flow is needed.

Objectives. The main objectives of this project can be summarized in three
categories.
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Experimental methods: To investigate shallow turbulent wake flows in the lab-
oratory, an experimental facility, measurement techniques and devices are
needed, which are specifically adapted to the geometrical restrictions (large
horizontal vs. small vertical extent) and the wide dynamic range of shal-
low shear flows. Whereas commercial optical measurement systems for flow
velocities are easily adjustable to these needs, the quantification of mass
concentrations requires the development or significant improvement of tech-
niques based on the observation of irradiance from the concentration field
and its evaluation with respect to the light attenuation due to various
physicochemical and/or optical reasons. In order to access the mass fluxes,
synoptic measurements have to be ensured, or synchronization of data has
to be ascertained.

Mean characteristics of shallow wakes: The effects of shallowness and bottom
friction significantly change the flow properties of shallow wakes with re-
spect to unbounded 2D wake flows. The time-mean wake flow fields, the
stochastic description of turbulence, and its flow stability will reflect the
additional kinematic and dynamic effects.

Large-scale coherent vortical structures: Horizontal vortical structures with a
lateral dimension much larger than the flow depth are regarded as key fea-
tures in the understanding of the transport of kinetic energy and mass in
shallow wakes. Its generation and decay mechanisms as well as the inter-
action of the large coherent structures with the small-scale shear–induced
turbulence have to be clarified experimentally. Its influence on the trans-
port of TKE and mass has to be quantified.

Contributions. Major contributions of this project can be related to the main
objectives listed above. Regarding the experimental methods, a fully equipped
and automated shallow flow facility has been designed and realized at the In-
stitute for Hydromechanics, University of Karlsruhe. An on-axis backscatter
LIF measurement system with an extended measurement range has been added
to the 2D LDV system, hence both the flow velocities and the mass concen-
trations of a fluorescent dye tracer can be obtained simultaneously with high
spatiotemporal resolution. A Planar Concentration Analysis (PCA) technique
has been developed on the basis of a hydro-optical attenuation model to ob-
tain field-wise depth–averaged mass concentrations. In the post-processing, an
adaptive phase–resolved averaging technique has been established in order to
decompose the velocity and mass data into low-frequent quasi-periodic motion
and random turbulence parts of the flow. This allows to correlate the quasi-
periodic coherent mass fields to the appropriate near-surface velocity fields,
provided by a PIV measurement system.
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The turbulence spectra reveal, at the low wave number scales, a spectral
transfer of turbulent kinetic energy and mass variance toward higher wave num-
bers following a −3 enstrophy cascade of 2D turbulence. The complementary
transfer toward lower wave numbers along an inverse energy cascade is absent,
i.e no merging of vortices occurs at the large scales. At the high wave num-
bers, the spectral transfer in the inertial–convective subrange of 3D isotropic
turbulence is observed. The scale duality of shallow turbulent wake flow, thus,
is evidenced from the turbulence spectral distributions. An analytical far wake
model, including the effect of bottom friction, has been deduced that predicts
the downstream development of the time-mean flow field of shallow wakes. The
comparison of experimental data to results of a linear stability analysis identi-
fies local instability regions, and indicates a strong decrease of the convectively
unstable region compared to unbounded 2D wake flows.

Decomposition of the field-wise velocities and mass concentrations into their
large-scale coherent and small-scale random parts allowed to localize regions
of kinetic energy production and of enhanced mixing and entrainment. Using
a structure identification scheme based on vorticity and shear strain, the large-
scale 2D vortical structures have been identified in the coherent flow fields. The
structure and dynamic behavior of a wake flow organized in a vortex street have
been illustrated as well as the generation and decay of the associated coherent
vortical structures. These are also highly relevant in the production of TKE
and in the mass transfer. To predict the depth–averaged mass concentrations
from surface velocity fields, a numerical particle tracking procedure has been
developed that makes use of given coherent velocity fields together with a
small-scale 3D turbulence model. The importance of the secondary motion of
the large-scale vortices for the lateral mass transfer has been demonstrated.

Outline. This study is organized into three main parts that discuss (I) non-
intrusive flow measurement techniques for the coincident data acquisition of
velocity and mass, (II) the time-mean flow characteristics of shallow turbu-
lent wakes, and (III) large-scale coherent vortical structures in shallow wakes.
Because of the wide range of topics and the resulting voluminous size of the
report, the reader is encouraged to concentrate on the most interesting part of
the report, and eventually follow some cross–references to related subjects in
the other parts of this work. The author felt it desirable to give concise infor-
mation also of the technical and physical background in order to improve the
understandability of this report. Some readers may find it useful to obtain more
detailed background information organized in textbook–like chapters and para-
graphs throughout this book, although in turn the style and range of a technical
report will be exceeded. The reader is encouraged to skip such textbook–like
paragraphs, if no additional information is needed.
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Preceding the main parts of the report, in Chapter 2 shallow shear flows
and shallow wakes are introduced, major research contributions are reported,
and the main concepts for the investigation of shallow wakes are discussed.

Part I is initialized by a short introduction to non-intrusive flow measure-
ment techniques. The planar and point-wise optical measurement techniques,
developed and employed for this projected, are described in detail in Chap-
ters 3 and 4, respectively. Both for the LDV/LIF and the PIV/PCA systems,
besides the technical information, emphasize is given to the conceptual and
physical background for the development of the model equations for the fluo-
rescence and for the hydro-optical light attenuation. In Chapter 5 the shallow
flow facility is introduced, the measurement program is summarized, and the
base flow—a plane near-equilibrium bottom friction–induced turbulent shear
flow—is characterized by its mean flow and turbulence.

To open Part II, in Chapter 6 the theoretical concepts of homogeneous 3D
turbulence and of 2D turbulence are reviewed with respect to the spectral dis-
tribution both of turbulent kinetic energy and of mass variance. Characteristic
macro and micro scales of length and time are reported that reflect the ambi-
guity of 2D and 3D turbulence. In Chapter 7 the conclusions of the theoretical
considerations are applied to the high resolution LDV/LIF data. Time scales
and corresponding length scales of turbulence are calculated for the different
wave number regimes. Spectral density estimates for TKE and mass variance
are computed from the full data sets, but also from data, which have been
decomposed into 2D quasi-periodic and 3D random turbulent parts. In order
to describe and to predict the mean flow properties, in Chapter 8 an analytical
wake model is derived from the integral conservation equations of momen-
tum and volume deficit and of mass. Its range of applicability is confirmed
from field-wise flow measurements. The results of a linear stability analysis are
related to experimental observations of laboratory wake flows with different
wake stability numbers. Thus, in Chapter 9 the local regions of absolute and
convective instability have been identified in shallow wakes.

In Part III, devoted to large-scale coherent vortical structures in shallow
wakes, Chapter 10 gives a definition for large coherent structures, and presents
a phase–resolved averaging technique to extract the coherent quasi-periodic
flow field as well as an identification scheme to educe the vortical structures.
The generation of the large coherent structures, its organization and down-
stream decay are described as well as the dynamics of shallow wakes that are
introduced by the interaction of the large coherent structures with the small-
scale incoherent fluctuations. The mass transport due to these large-scale vor-
tices is addressed in Chapter 11. The coherent and incoherent field-wise distri-
butions of mass concentrations are obtained from a phase–resolved averaging,
and are related to the coherent velocity fields and to the large-scale vortical
structures. The coherent mass transport is evaluated and compared to results
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of a numerical particle tracking that allows to predict the mass transport from
a given set of coherent surface velocity fields.

In Chapter 12 we conclude with a brief summary of the main results. Further
perspectives for future work are given that may help to elaborate and further
develop the findings of this project as to meet the needs of applied science and
engineering applications.
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2. Phenomenology of Instability in Shallow Flow

Shallow turbulent flows are ubiquitous in nature. Many environmental flows
can be characterized by horizontal length scales L much greater than the flow
depth h, i.e. h � L. Due to a large single obstacle like a small island, a
disturbance is introduced in the shallow near-equilibrium vertical shear flow.
Large, predominantly two-dimensional eddies can alternately shed off from the
obstacle and advect downstream. Although an unbounded plane lateral shear
flow is inviscidly unstable, in shallow wakes due to the limited vertical extent,
the large-scale eddies are not affected and disintegrated by three-dimensional
vortex stretching mechanisms. By virtue of the bottom–induced vertical shear,
firstly, the disturbance can be stabilized, and secondly, the kinetic energy of
the large eddies can be dissipated.

2.1 Nature’s repertoire of large vortical structures in shallow

turbulent flow

Observations of large-scale quasi-2D vortical structures in shallow turbulent
flow are well-documented in the meteorological and geographical literature over
the past 4 decades. Besides inland and coastal flows with a limited water depth
due to the solid bottom, we encounter shallow flow conditions also in geomet-
rically deep situations. In the deep oceans or the near-surface atmosphere we
often observe density stratifications, which again restrict the vertical extent of
the flow.

Atmospheric wake flows. For a number of isolated islands around the world,
the appearance of large-scale eddy structures often arranged in a vortex street
is reported occasionally. In general, the air flow in an atmospheric convective
boundary layer (CBL) covered by a stably stratified layer is forced to flow
around an isolated obstacle extending over the whole height of the lower CBL.
In the lee of the island obstacle the flow is destabilized, and large eddy struc-
tures are generated, which are imprinted onto the cloud cover at the inversion
on top of the CBL.

Berger & Wille (1972), as well as Chopra (1973), summarized the first
analytical explanations and the early observations from satellite images. Fol-
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Figure 2.1. This over 300 km long atmospheric vortex street in the wake of Jan Mayen
Island about 650 km northeast of Iceland in the North Atlantic Ocean was captured on June
6, 2001 from the “Terra” observer. The snow-covered Beerenberg volcano, which appears on
the left of the image, rises about 2.2 km above sea-level, providing a significant impediment
to the wind flow. (http://photojounal.jpl.nasa.gov/tiff/PIA03448.tif)

lowing Berger & Wille (1972) and Etling (1990), the first observations
on periodic separation of horizontal vortices were made by the Norwegian me-
teorological station on the arctic island of Jan Mayen in the 1930s. Simply be-
cause of their large horizontal dimensions, atmospheric vortex streets are not
accessible from terrestrial or airborne observations, thus they were frequently
identified only since the 1960s from satellite images. Etling (1989, 1990) dis-
cussed recent concepts for the emergence of atmospheric vortex streets behind
cone-shaped islands with a special focus on the so-called dividing streamline
concept. As extracted from field data by Etling (1989), necessary precondi-
tions for the generation of a vortex street pattern is (i) a stable stratification
of the lower atmosphere always combined with a low elevated inversion, and
(ii) the disturbance of the flow due to an isolated obstacle, that is signifi-
cantly higher than the inversion height. Prominent examples are found in the
trade-wind zones: the island of Madeira and the Canary Islands in the At-
lantic Ocean (e.g. Chopra, 1973) (see Figure 2.2(a)), the island of Guadalupe
near Baja California (Etling, 1990; Klingholz, 1997) (see Figure 2.2(b)),
the A. Selkirk Island near the Robinson Crusoe Islands off the Chilean coast
(DeFelice et al., 2000), and the Hawaiian Islands in the Pacific Ocean. On
the other hand, CBLs can often be observed in the Polar regions, isolated is-
lands here are Jan Mayen northeast of Iceland in the North Atlantic Ocean
(Scorer, 1986; NASA, 2002; Spiegel Online, 2002) (see Figure 2.1), the
Aleutian Islands near Alasca in the North Pacific Ocean (Thomson et al.,
1977), or Cheju off the Korean coast.

Oceanic wake flows. Also in coastal waters obstructions of the shallow (evtl.
tidal) flow due to islands or headlands induce wake flows of different stabil-

http://photojounal.jpl.nasa.gov/tiff/PIA03448.tif
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(a) Madeira and the Canary Islands (b) Island of Guadalupe near Baja California

Figure 2.2. (a) The vortex street patterns behind Madeira (located in the up-
per left corner of the image) and the Canary Islands show significant inter-
action and annihilate each other for the given air flow conditions. Contrar-
ily, for an only slightly different wind direction parallel vortex streets emanat-
ing from the Canaries can be observed over long distances without cancella-
tion. (http://visibleearth.nasa.gov/data/ev25/ev2532_S2000156133525.png) - (b)
An atmospheric vortex street (length more than 250 km) in the lee of Guadalupe off the
Mexican coast was observed on July 28, 1973 from a height of 435 km (Klingholz, 1997,
p. 34).

ity regimes. Thus, also large-scale vortical structures can emerge from such
obstacles under certain flow conditions. Qualitative information of the wake
pattern in shallow coastal flows can be obtained from airborne and satellite
infrared images, or from pattern recognition of satellite images of flows exhibit-
ing a turbidity pattern due to suspended sediments or biological markers like
phytoplankton.

Wolanski et al. (1984) reviewed the early field observations, but also
analyzed the wakes of Australian coral reefs (esp. Rattray Island) from en-
hanced sediment turbidity images and radar, and employed more quantita-
tive oceanographic methods like moored current meters and sea level, salin-
ity and temperature surveys. Other field studies using airborne photographs
were carried out e.g. by Ingram & Chu (1987) for islands in Ruppert Bay,
Northern Ontario, by Cramp et al. (1991) for Flat Holm in the Severn Es-

http://visibleearth.nasa.gov/data/ev25/ev2532_S2000156133525.png
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tuary of the Bristol Channel, or by Ferrier et al. (1996) for a rocky island
The Battery in the River Tay estuary. Another example for quantitative field
studies are ADCP1 measurements of tidal flows around a headland conducted
by Geyer & Signell (1990); Geyer (1993) in the Vineyard Sound, Massa-
chusetts.

Especially the works of Wolanski et al. (1984); Ingram & Chu
(1987) also serve as test cases both for laboratory simulations (cf. e.g.
Ingram & Chu, 1987; Wolanski et al., 1996) and for numerical models
(e.g. Furukawa & Wolanski, 1998; Wolanski et al., 1996). The stabil-
ity of the flow past headlands was studied in the field and laboratory e.g. by
Pattiaratchi et al. (1986) and numerically by Davies et al. (1995).

Albeit in the majority of observed shallow wakes the ambient flow is desta-
bilized by natural geometrical obstacles like islands or headlands, also anthro-
pogenic alterations of the bathymetry due to technical structures can induce
unstable wake flows and shallow vortex streets. A spectacular example is the
wake of a grounded tanker presented by van Dyke (1982, p. 100). The crude
oil spilled by the Argo Merchant, that went aground on the Nantucket shoals
in 1976, formed a vortex street-like wake pattern, though the Reynolds num-
ber was ReD ≈ 107. On smaller scales the recent installations of off-shore
wind farms with multiple generators will introduce wakes behind the pylons,
which in the case of shallow flow conditions may be 2D and very persistent on
the larger scales. They eventually will become unstable and arrange in vortex
streets (Lass, 2002), and thus may influence also the coastal aquatic environ-
ment.

Large-scale vortical structures. In coastal seas large whirling flows with
a vertical vorticity vector exist, which are primarily shed from solid obsta-
cles disturbing the base flow. Large-scale vortices, so-called tidal vortices were
observed all over the world since ancient times in narrow straits with high
tidal flow velocities. As famous classical examples for tidal vortices that are
advected by the base flow, Lugt (1979, pp. 366) mentioned the Charybdis
of Homer’s Odyssee in the Strait of Messina east of Sicily, and the Mael-
strom in the Norwegian Lofoten Islands. The probably strongest tidal vortices
are encountered in Naruto Strait connecting a large lagoon to the Japanese
Sea, they shed from the southern headland into the tidal flow of the strait
(maximum current speed 4.6 m/s, maximum difference of tidal sea levels
across street: 1.5 m). Chanson (2002) reported of an freighter, which ac-
cidentally became caught in the vortices and got stranded during his visit
(cf. Figure 2.3(a)). Very large vortices with a life time of several years can
be observed in the Pacific Ocean off the coast of British Columbia and

1 Acoustic Doppler Current Profiler
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(a) Tidal vortices shedding into Naruto
Strait

(b) Phytoplankton indicating large vortices
off British Columbia

Figure 2.3. (a) The tidal whirlpools in the Naruto Strait, Japan, caught a freighter, that got
grounded near the bridge pier. In the foreground of the image a large vortical structure (di-
ameter up to 15 m) is visible. (http://www.uq.edu.au/~e2hchans/whirlpl.html) - (b)
The bright red, green, and turquoise patches to the west of British Columbia’s Queen Char-
lotte Islands and Alaska’s Alexander Archipelago highlight the presence of biological activity
in the ocean. These colors indicate high concentrations of chlorophyll, the primary pigment
found in phytoplankton. Notice that there are a number of eddies visible in the Pacific Ocean
in this pseudo-color scene. The eddies are formed by strong outflow currents from rivers along
North America’s west coast that are rich in nutrients from the springtime snowmelt running
off the mountains. This nutrient-rich water helps stimulate the phytoplankton blooms within
the eddies. (http://visibleearth.nasa.gov/cgi-bin/viewrecord?13572)

Alaska (cf. Figure 2.3(b)), they are subject of the TOPEX/Poseidon mission
(http://earthobservatory.nasa.gov/Study/Eddies/).

2.2 Shallow shear flows

2.2.1 Definition of shallow shear flow

Shallow wake flows being the subject under consideration in this research re-
port, belong to the class of shallow shear flows, which we can understand to
result from the interaction of a turbulent vertically sheared base flow (ver-
tically bounded frictional flow) and a free horizontal shear flow (unbounded
plane flows like mixing layer, jet, or wake).

Flow classification. An unbounded plane shear flow is characterized in its
time-mean flow field by a predominately uni-directional flow U1, which is

http://www.uq.edu.au/~e2hchans/whirlpl.html
http://visibleearth.nasa.gov/cgi-bin/viewrecord?13572
http://earthobservatory.nasa.gov/Study/Eddies/
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sheared in the transverse direction ∂U1/∂x2, whereas it is homogeneous in the
third dimension, i.e. ∂/∂x3 = 0. Thus, it can be considered a free 2D flow in its
time-averaged flow quantities, though its instantaneous turbulence behavior is
of course clearly 3D in the higher order wave numbers. Plane mixing layer flows,
plane jets, and plane wake flows are prominent examples discussed in many
text-books of hydromechanics and turbulence, e.g. Pope (2000, Chapter 5)
gives a thorough overview about these free shear flows. In their far field, i.e. far-
ther away from an initial disturbance of the base flow, free shear flows turn out
to be self-sustaining in terms of momentum conservation. Additionally, they
reveal a self-similar behavior in their far fields, i.e. when non-dimensionalized
by local characteristic scales, their behavior is independent of the downstream
position.

The base flow (liquid) can be confined in its vertical extent either by a solid
wall of a given roughness (liquid - solid), by a free surface (liquid - gaseous),
or by a density stratification (liquid - liquid). The influence of boundaries on
turbulent free shear flows is two-fold depending on the type of boundary in-
teraction. Firstly and from purely kinematic reason, every fluid boundary will
reduce or suppress the turbulent (Reynolds) normal stresses 〈w′w′〉 perpen-
dicular to the boundary, consequently (due to continuity or conservation of
momentum) the tangential normal stresses will be amplified. Secondly, if a
“no-slip” condition has to be assigned to the boundary, i.e. viscosity induces
a sheared flow near an interface, esp. near a solid rough wall, an additional
dynamic damping of these turbulent fluctuations occurs.

Provided a sufficiently high Reynolds number, viscous boundary layer flows
exhibit an “inertial subrange” of wavenumbers kw in their turbulence spectrum,
through which energy is transferred at a rate ∝ k

−5/3
w from the production

range (TKE contained in large eddies with low kw) to the dissipation range
(where viscous effects dominate eddy motions down to the Kolmogorov length
scale `η). According to Kolmogorov’s first similarity hypothesis (Pope, 2000,
pp. 185), the turbulence statistics in the “universal equilibrium range”, con-
sisting of the inertial subrange and the dissipation range, depend uniquely on
dissipation rate ε and molecular viscosity ν regardless of the type of flow. On
the contrary, the energy-containing large eddies of the production range, and
thus the appropriate statistics, vary in different flow configurations.

In different shallow shear flows the large-scale vortical structures of the
production range, therefore, have to be examined explicitly, whereas we expect
the small-scale turbulent motion not to change for different types of shallow
shear flow. Furthermore, because of the amplification of the horizontal normal
stresses due to vertical boundaries, also the horizontal growth rates of shallow
shear flows significantly exceed the growth rates of their unbounded relatives.
Moreover, large-scale vortical structures with vorticity vectors orientated per-
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pendicular to the interfaces may be introduced into a shallow flow and may
grow following an “inverse energy cascade” and decay obeying the laws of “2D”
turbulence.

Further restrictions. Throughout this work we will firstly neglect
geostrophic flows by excluding the influence of the Coriolis force on the flow
due to the earth’s rotation Ω, i.e. we restrict this work to flows, for which
the typical largest length-scale is significantly below the Rossby radius, i.e.
LΩ � L.2 Secondly, we will restrict the base flow or inflow condition to nearly
uniform plane shallow flows, thus we are excluding any effects due to variation
in bathymetry and due to flow curvature, which implies any secondary currents
e.g. in river bends or in corners of compact channel cross–sections. Though this
assumption seems to be crude, there might be some justification due to the
limited area of investigation, if we look at the flow variations only in those
flow regions deviating significantly from the shallow base flow conditions, or
even more strict, if we look at variations of the shallow base flow only over the
travel distance of a large-scale eddy structure.

Since we want to understand real-world flows being highly turbulent in
general, we examine flows with—as a characteristic non-dimensional quantity—
a bulk Reynolds number Re = U h/ν of the magnitude O

(
103
)

or larger, where
U is the bulk mean main-velocity component, and ν is the kinematic viscosity.
It is not always easy to achieve such high Reynolds numbers in shallow flow in
the laboratory.

The viscous fluid is subjected to shear stresses at the bottom equipped with
a given geometrical roughness, which might be small, but finite. This results
in a vertical variability of the flow velocity, which for the time-mean values
of the main flow component is described by the theoretically and empirically
well-founded logarithmic law of boundary layer flow. The structure of turbu-
lence in such flow is dominated by the mechanisms of generation and decay of
small-scale 3D turbulence in a turbulent boundary layer. For instance, Kelvin-
Helmholz instabilities generated in the near wall viscous sublayer introduce vor-
tical structures into the turbulent shear flow via vortex stretching mechanisms,
where they are continuously stretched and disintegrate into smaller structures.
Therefore, near the bottom energy is extracted from the mean flow due to pro-
duction of turbulent kinetic energy (TKE), close to the surface the dissipation
rate exceeds the turbulence production. The re-organization and transfer of

2 The Rossby number Ro relates the nonlinear convective acceleration to the Coriolis force,

Ro ∼ U2/L
fΩU

= U
fΩL

, where U and L are characteristic flow scales and fΩ = 2Ω sin θ is

the Coriolis frequency. For small Ro ≤ O (1) the earth’s rotation significantly influences
or even dominates the flow. The Rossby radius being a length scale, where Coriolis forces
become important to the flow, can thus be estimated to be LΩ ≥ U

fΩ
. For instance, for a

latitude of θ = 50◦ and a typical riverine flow velocity of U ≈ 1.0m/s, LΩ ≥ 1.0m/s
2Ω sin 50◦

≈
9 km with Ω = 2π/24h = 7.29 · 10−5 s−1.
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TKE in the spectral distribution of the turbulent fluctuations down to smaller
wave numbers kw (the so-called “energy cascade”) reveals the well-known −5/3

power law in the wave number spectrum S (kw) ∝ k
−5/3
w of isotropic 3D turbu-

lence, given a sufficiently high Re. For more detail on the structure of boundary
layer turbulence the reader is referred to turbulence textbooks like Lesieur
(1997) or Schlichting & Gersten (1997), the broad variety of turbulent
features in rivers including also larger-scale structures is thoroughly discussed
by Nezu & Nakagawa (1993).

2.2.2 Large-scale vortical structures and quasi-2D turbulence

This turbulent shallow base flow, which we want to regard as uniform or at least
nearly uniform, may be disturbed locally at sudden changes of the boundary
geometry, for instance by a blunt obstacle mounted on the channel floor. It
can also be subjected to continuous disturbances distributed over a larger part
of the flow domain, like dunes on a river bottom or a gradual change in the
bathymetry, e.g. in depth. Besides this convective variations also local changes
of the flow, like a decelerating tidal current, may induce disturbances to the
base flow. These initial disturbances can sustain oscillations, that reorganize
the kinetic energy of the flow and may grow into large-scale eddy structures.
The horizontal extent LLCS of these vortical structures is significantly larger
than the water depth, i.e. LLCS � h. Obviously from kinematic reason, the
vorticity vectors of such large vortical structures are orientated vertically, i.e.
perpendicular to bottom and free surface.

Therefore, we can expect eddy structures to behave essentially two-
dimensional on the larger scales, and not to show any depth-dependent flow
variations despite in a thin viscous boundary sublayer close to the bottom.
We address this large-scale behavior of turbulent fluctuations in shallow flows
as quasi “two-dimensional ” turbulence induced by large-scale two-dimensional
vortical structures. Of course, also these large-scale 2D structures show the
spectral behavior of 3D turbulence in the larger wave number range, i.e. higher
frequency range, resulting from high-frequency fluctuations and small-scale co-
herent turbulence structures. Contrary to the mechanisms of 3D turbulence,
vortex stretching mechanisms of the classical energy cascade are suppressed in
the wave number range of large-scale 2D turbulence. Instead, vortex pairing
or merging of eddies with the same sense of rotation may even lead to growth
of the 2D vortical structures, thus spectral energy will even be transferred
to lower frequencies or larger wave numbers via the so-called “inverse energy
cascade”.
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2.2.3 Forcing mechanisms

Mean advective kinetic energy is extracted from the base flow by an initial
transverse shear and is translated into turbulent kinetic energy at different
wave number ranges depending on the type of shear. In shallow turbulent
flow, a significant amount of TKE is incorporated into the large-scale vortical
structures of the low-frequency 2D turbulence, that emerge into the flow from
the initial shear. Within these large-scale eddies, the low-frequency turbulent
fluctuations are represented by vertical vorticity ωz.

According to Jirka (1998, 1999, 2001), one can define three types of gen-
eration mechanisms for large-scale vortical structures, listed in order of their
strength:

“Type A: Topographical forcing: This is the most severe generation
mechanism in which topographic features (islands, headlands, jetties,
groynes, etc.) lead to local flow separation, formation of an intense
transverse shear layer and return velocities in the lee of the feature.”

“Type B: Internal transverse shear instabilities: Here velocity va-
riations in the transverse directions that exist in the shallow flow
domain give rise to the gradual growth of 2DCS [i.e. 2D Coherent
Structures]. Such lateral velocity variations can be caused by a number
of causes: due to source flows representing fluxes of momentum excess
or deficit (shallow jets, shallow mixing layers, shallow wakes) or due
to gradual topography changes or roughness distributions (e.g. flow in
compound channels).”

“Type C: Secondary instabilities of base flow: This is the weakest type
of generating mechanism and experimental evidence is still limited.
As remarked earlier, the nominal base flow is a uniform wide channel
flow that is vertically sheared and contains a 3-D turbulence structure
also with coherent features, i.e. the well-known 3-D burst events, con-
trolled by the bottom boundary layer. Slight imbalances in this flow
process can lead to a wholesale redistribution of the momentum ex-
change processes at the bottom boundary, including as an extreme
case separation of the bottom boundary layer. The distortion of the
vortex lines caused by these flow imbalances lead ultimately to 2DCS.
Contributing factors may be localized roughness zones or geometri-
cal elements (underwater obstacles). [...] Gradual decelerations in the
base flow (spatial or temporal, viz. tidal oscillations) can also lead to
a breakdown of the base flow into 2DCS. [...] In either instance, the
transverse momentum exchange induced by these flow patterns may
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(a) Type A: Vortex shedding from groin (b) Type B: Shallow mixing layer

Figure 2.4. (a) Groin fields on the River Rhine (Waal) in the Netherlands
(Jirka & Uijttewaal, 2004). – (b) The Bavarian city of Passau is located at the con-
fluence of the river Inn (light brown due to sediment load), the river Danube (dark brown)
and the tributary river Ilz (black). Large vortical structures can be observed growing in the
transverse shear layer especially for high discharges. [photograph by courtesy of F. Carmer]

explain the perplexingly high friction factors (Darcy-Weisbach coef-
ficients) that have been found necessary when hindcasting numerical
model results for flows in very wide open channels.”

Jirka (2001, p. 568)

Various examples for the different forcing mechanisms can be found in nat-
ural shallow flows as well as in flows with an anthropogenicly altered bathym-
etry, as illustrated in Figure 2.4. The topographical forcing (type A) leads
to the shedding of large-scale eddies directly from an obstacle, which rapidly
changes the flow geometry along the flow direction. Locally well-defined regions
of intense Reynolds shear stresses indicate the generation region of large vor-
tices, and are essential for type A forcing. As an example Figure 2.4(a) shows
the shedding of large eddies from the head of a groin.

For the type B forcing, a horizontal shear layer has to extend continuously
over a significant downstream distance. Shallow jets and wakes characterized by
their initial momentum excess, resp. deficit, which recovers due to the influence
of bottom friction, may show long, but finite shear layers (e.g. shallow flow in
the lee of islands). On the contrary, shear layers induced by changes in cross–
sectional geometry may be virtually infinite (e.g. river reaches trained by series
of groin fields). Such an elongated shear layer nourishes the gradual growth of
large-scale vortical structures. Figure 2.4(b) exemplifies the growth of internal
transverse shear instabilities for the confluence of the rivers Danube, Inn, and
Ilz in Passau, Germany.

The type C forcing due to secondary instability of the base flow is not
induced by localized (type A) or distributed (type B) transverse gradients
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of the mean longitudinal flow, i.e. part of the horizontal mean rate of shear
strain. Compared to the types A and B, is the weakest mechanism, and as
such it is the least obvious one. But occasionally there are reports, which
could be associated with this kind of forcing. For instance, so-called “boils”,
i.e. large-scale vortical structures, are frequently observed in rivers. Also in
coastal waters such large eddies can occur in tidal creeks localized by scour
holes (Lugt, 1979). In estuaries such instabilities might also be triggered by
spatially distributed macro roughness elements (e.g. dunes) in decelerating
tidal currents. This may lead to astonishing high friction coefficients, that are
found to be necessary when calibrating a numerical model of an estuarine river
(Khatibi et al., 2001).

2.2.4 Methods of investigation

As shown in Section 2.1,—mainly from airborne and satellite field
observations—we have a good qualitative impression of the variety of shallow
flow instabilities as well as of their general behavior. To understand the under-
lying physical mechanisms of the de- and re-stabilization of shallow shear flows
in more detail, we also want to conduct quantitative measurements, which is
not possible on the field scale with sufficient data density and accuracy. Thus,
we have to reduce the geometrical scale of such flows down to laboratory size,
which enables us to receive detailed information, that can be compared to
analytical solutions and numerical simulations.

Laboratory experiments. If we want to experimentally explore plane shal-
low flows, i.e. flows which are confined vertically but laterally remain un-
bounded, we need a well furnished laboratory facility including a large3 shal-
low water flume or basin. For such installations, high accuracy is needed in the
bottom bathymetry and roughness as well as in the discharge control in or-
der to establish a horizontally uniform and homogeneous base flow. Among few
others, appropriate experimental facilities have been installed at the Delft Uni-
versity of Technology, The Netherlands, (Tukker, 1997) and at the University
of Karlsruhe, Germany, (v. Carmer & Deutsch, 2001). Primary measuring
systems, which are recommended for shallow flow investigations, employ non-
intrusive optical techniques to observe the flow fields both of momentum and a
passive scalar, ideally in a synoptical way. These include both point-wise tech-
niques like Laser Doppler Velocimetry (LDV) and Laser Induced Fluorescence

3 To avoid influences due to surface tension, the water depth should be kept above 2 cm
to 3 cm. E.g. for a shallow wake flow, using an aspect ratio for an obstacle of D/h =
10 to satisfy shallowness, and a blockage of the discharge area of below 5% to 10% to
satisfy lateral unboundedness, we can estimate the lateral extent of a shallow flow basin
to be around 3 m to 5 m. The shallow base flow in an installation of that dimension
reaches depth-averaged Reynolds numbers Reh ≥ O(103), i.e. a turbulent base flow can
be provided.
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(LIF), and planar techniques like Particle Image Velocimetry (PIV), Particle
Tracking Velocimetry (PTV), Planar Laser Induced Fluorescence (PLIF) and
Planar Concentration Analysis (PCA).

Other experimental facilities are dedicated to the examination of 2D vortical
structures, as they also occur in shallow turbulent shear flow. Here, experimen-
tal research aims more at oceanic or atmospheric flows, the base flow condition
is a non-turbulent or even quiescent fluid. For instance, the largest installation
of that kind is the “Coriolis” turntable with a diameter of 13 m operated at the
LEGI in Grenoble, France. At the Eindhoven University of Technology, The
Netherlands, the re-organization of 2D vortical structures is investigated both
resulting from an initial mechanical grid-forcing in a density-stratified tank
(Maassen et al., 2002) and resulting from initial or continuous electromag-
netic forcing. Another type of nominally 2D flows are thin film flows. Only
recently new laboratory installations to generate soap-film flows were set up
(cf. Rutgers et al. (2001) for an up-to-date overview), and employing LDV
and PIV measurement techniques they now also provide quantitative inside
into shallow wake flows.

Numerical simulations. With the rapidly increasing computational power
at affordable expense (increasing cpu speed combined with construction of
large cluster farms) methods to numerically simulate shallow turbulent shear
flows become more and more promisingly. Especially Direct Numerical Simula-
tion (DNS) greatly benefits from this development. Though not yet applied to
shallow flows, DNS calculations are conducted for cylinder wake flows at cylin-
der Reynolds numbers close to those realized in laboratory experiments. For
instance, Ma et al. (2000) report DNS results at ReD = 3900 in comparison
to laboratory measurements and to Large Eddy Simulation (LES) calculations.
As in many shallow shear flows large-scale 2D vortical structures dominate the
flow, 2D or 3D LES are expected to be suitable also for high Reynolds number
flows, since in LES the low wave numbers are explicitly resolved, whereas for
the higher wave numbers of the 3D turbulence a closure model has to be applied
(Hinterberger, 2004). In order to solve the depth-averaged 3D SWE, a k−ε
turbulence model has been applied to a shallow wake flow by Stansby (1997),
which provided reasonable results in the near field dominated by small-scale
3D turbulence. Yet it remains questionable, whether a k − ε model is capable
of representing the anisotropic turbulence in the wake far field, where quasi-2D
turbulent structures prevail.

Stability analyses. Shallow shear flows are also examined theoretically using
the methods of linear stability analysis, which are well suited to explore the
stability of unbounded laminar plane shear flows disturbed by small-amplitude



2.3 Shallow turbulent wakes 19

perturbations.4 Since shallow turbulent shear flows are horizontally bounded
by a solid bottom and a free surface, Chu et al. (1983, 1991) and later
Chen & Jirka (1997, 1998) implemented a bottom friction term in the depth-
averaged shallow-water equations (2D SWE) and used an eddy viscosity for-
mulation to cover the lateral shear stresses. Substituting small-amplitude 2D
perturbations into the equations of motion, Chen & Jirka (1997) derived a
modified form of the Orr-Sommerfeld equation with the added effect of bottom
friction, and carried out linear stability analyses of plane wakes in shallow tur-
bulent water flows. Albeit the stability problem is simplified due to linearization
and due to the application of algebraic turbulence and shear models, linear sta-
bility analysis has proven to be a useful tool in order to understand and predict
the evolution of perturbations also of a shallow turbulent shear flow.

2.3 Shallow turbulent wakes

This work is devoted to the examination of a special class of plane shear flows,
namely to shallow turbulent wakes, which develop in plane shallow base flows,
that receive additionally shear in the horizontal direction due to a large ob-
stacle. Such an obstacle may be a circular cylinder vertically extending over
the whole flow depth with a lateral dimension D � h. As mentioned above, in
contrast to unbounded cylinder wakes the limited vertical dimension gives rise
to the development of large-scale 2D structures—this is justified both from
kinematic and dynamic reason—and to a quasi 2D mean flow field at least
in the dominating low wave number scales of turbulence. Unbounded wakes
have been the subject of research for decades5 now. Consequently there exists
a vast amount of literature concerning theoretical, numerical, and experimen-
tal aspects of this fundamental topic. We will refer to selected questions and
details on unbounded wakes, as is necessary for comparison throughout this
work on bounded turbulent wakes. The reader may want to study unbounded
wakes in more detail and therefore may consult various review papers; instead
we recommend the ‘meta-review’ of Zdravkovich (1997), that deals with the
fundamentals of flow around circular cylinders in the first volume; the second
volume on applications (esp. geometry variations, unsteady free stream, and
flow induced oscillations) has been announced to be published in 2003.

4 The well-known Rayleigh and Orr-Sommerfeld equation for inviscid and viscous plane
shear flow will be briefly introduced in Chapter 9.

5 Leonardo da Vinci, Italian universal genius of the Renaissance, was concerned also with
hydrodynamic scientific and engineering questions (e.g. Gharib et al., 2002). He studied
the turbulent motion of water also in the wake of an obstacle as early as in the beginning
of the 16th century (see also Figure on page 1).
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2.3.1 Stability of shallow wakes

A main focus of this work is on the global instability of shallow wake flows
coupled with the generation and decay of large-scale 2D structures in (or as
part of) the turbulent plane shear flow. Crucial for the generation of such
large-scale 2D structures—at least for the two strong forcing mechanisms (type
A and type B) encountered in wake flows—is the interaction of the vertical
shear layer induced by bottom friction in the base flow and of the horizontal
shear layers representing the transverse difference in longitudinal momentum
transport. Since bottom friction slows down the vortical motion of the large-
scale structures, it suppresses the development of turbulence due to lateral
shear. Therefore, the spatiotemporal evolution of the 2D structures is controlled
by the interaction of both shear mechanisms. On the one hand, kinetic energy
is extracted from the mean advective flow and incorporated into the large-
scale coherent motion by means of transverse shear, on the other hand within
the bottom boundary layer large-scale turbulent kinetic energy is continuously
extracted again from the coherent motions and dissipated either directly or via
the energy cascade of small-scale 3D turbulence. Thus, bottom friction not only
opposes the generation of large-scale structures near obstacles (type A forcing),
but also dampens their development within the lateral shear layers (type B
forcing). Regarding the wake flow dynamics, lateral shear may induce large-
scale instabilities into the plane shear flow and maintain their growth, whereas
bottom friction counteracts their generation and evolution. In conclusion, the
mechanism of generation and decay of the large-scale 2D vortical structures is
also crucial for the global stability of a turbulent wake flow.

Stability number. By comparison of the loss (dissipation) Fb of large-scale
2D kinetic energy due to bottom friction to the production Pc of large-scale
2D kinetic energy due to lateral shear, one can define a dimensionless stabil-
ity number Sflux, called the flux stability number describing the transfer of
large-scale TKE. Sflux characterizes the influence of bottom roughness on the
generation and supply of large-scale 2D vortical motion, and thus characterizes
the global stability of shallow shear flows. The large-scale coherent production
Pc of TKE due to horizontal shear is given by the product of the Reynolds
shear stress due to large-scale coherent fluctuations and of the transverse gra-
dient of the time-mean main velocity component

Pc = −〈up vp〉
∂U

∂y
. (2.1)

The large-scale coherent motions doing work against the bottom shear result
in the loss Fb of TKE, which is dissipated directly at the high-frequency turbu-
lent fluctuations without passing through the inertial subrange in a classic 3D
energy cascade. As properly derived from the 2D SWE by Babarutsi & Chu
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(1991)6, if we assume for shallow shear flows that the time-averaged transverse
velocity component V and the large-scale coherent fluctuations up and vp are
small compared to the mean longitudinal velocity component U , the dissipation
of large-scale TKE can be approximated by

Fb =
cf
2h
U (2 〈uc uc〉 + 〈vc vc〉) , (2.2)

where cf denotes a quadratic law friction coefficient. Using a two-length-scale
decomposition of the flow velocity u, we will identify three flow components:
the time-mean flow U , the large-scale coherent flow up, and the small-scale
turbulent flow ur, as explained in more detail in Chapter 10.

Using the above expressions for Pc and Fb, the flux stability number becomes

Sflux ≡ Fb
Pc

=
cf U

2h ∂U/∂y

2 〈upup〉 + 〈vpvp〉
〈upvp〉

. (2.3)

For values Sflux above unity, i.e. the dissipation of large-scale TKE exceeds
the production of large-scale TKE, large-scale fluctuating motions will be
damped away, the flow is stabilized in the low wave number range. The
term (2 〈upup〉 + 〈vpvp〉) / 〈upvp〉 represents the ratio between the large-scale
Reynolds normal and shear stresses. For the evaluation of the stability cri-
terion, in definition (2.3) also this stress ratio has to be obtained from 2D
turbulence measurements, or has to be estimated e.g. from corresponding free
shear flow values7.

Chu et al. (1983) proposed a gradient stability number Sgrad for a shal-
low turbulent shear flow with an inflection point in its transverse main velocity
profile, where ∂2u/∂y2 = 0. Sgrad can be obtained from (2.3) by neglecting the
large-scale stress ratio as well as a factor 1/2. The transverse velocity gradient
has to be evaluated locally (Chu et al. (1983) suggested to choose the in-
flection point) and could be replaced by finite differences, i.e. ∂U/∂y ≈ 4U/δ,
where 4U = U1−U2 displays a characteristic velocity difference between both
sides of a shear layer with the width δ. Thus, a gradient stability number can
be defined as

Sgrad ≡
cf
h

U

∂U/∂y

∣∣∣∣
IP

≈ cf
δ

h

Uavg
4U =

cf
2R

δ

h
(2.4)

evaluated at the lateral position of the inflection point y = IP . Herein, the
relative velocity difference R is given by

R ≡ Uhigh − Ulow
Uhigh + Ulow

=
4U

2Uavg
. (2.5)

6 cf. also Chu et al. (1991, pp. 1371)
7 Babarutsi & Chu (1991); Chu et al. (1991) give a value of 0.1 following

Bradshaw et al. (1967).
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In order to analyze the stability of the wake flow behind an island,
Ingram & Chu (1987) applied (2.4) at the end of the recirculation bubble
attached to the island, where the mean flow is Ulow = 0 for the rear stagnation
point, thus R = 1. The half-width of the wake being the width of each of both
shear layers was estimated to be half the island diameter, δ = D/2. The wake
stability parameter

S ≡ cf
D

h
(2.6)

then is related to the gradient stability number by S = 4Sgrad. Compared
to the flux or gradient stability number, the wake stability number is a more
geometric parameter, which is related to the origin of the shallow wake flow
instead of varying with the downstream position. S can thus be regarded as
a global stability parameter, Sflux and Sgrad as local stability parameters.
Therefore, the stability of shallow shear flows induced by a type A forcing
mechanism can be addressed by the wake stability number S, whereas the
gradient stability number Sgrad is well suited to characterize a type B instability
of shallow shear flow.

Stability classification. Chen & Jirka (1995) used the wake stability num-
ber S in an extensive visualization study to classify the stability of shallow
turbulent wake flows induced by circular cylinders as well as by solid and
porous flat plates. They observed the flow pattern in the wake of such local
disturbances of a shallow plane equilibrium shear flow, which can contain (or
consist of) large-scale 2D vortical structures. These wake instabilities can be
associated with type A or B forcing mechanisms. With respect to the strength
of the perturbation, one can distinguish three classes of instability, which in
agreement with Chen & Jirka (1995) we address as vortex street (VS) insta-
bility, unsteady bubble (UB) instability, and steady bubble (SB) instability. The
following explanations reflect the flow around axisymmetric (e.g. cylindrical)
obstacles, but they can be extended to capture also further shapes of obstacles.

VS - Vortex Street-like Wake
In the case of a massive perturbation of the base flow (type A forcing)
a large amount of kinetic energy is extracted from the mean flow and
transferred to the fluctuating flow field, i.e. converted into TKE. In the
VS case a significant part of the extracted mean-flow energy is incor-
porated into large-scale 2D vortical structures, which alternately shed
from the shoulders of the obstacle, and, analogously to a v. Kármán
vortex street, staggeredly arrange in both shear layers each contain-
ing vortices of opposite sense of rotation (i.e. eddies in left shear layer
rotating clockwise, and vice versa).
UB - Unsteady Bubble Wake
If the mean momentum deficit due to the local disturbance is weaker,
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the boundary layers separate simultaneously from both sides the obsta-
cle, and delimit a recirculation bubble attached to the obstacle. At the
downstream end of the recirculation zone, the separated shear layers
merge and roll up into large eddies of alternately changing sense of ro-
tation, which again alternately shed from the bubble end. Thus, firstly
the length of the recirculation bubble varies with the shedding cycle,
and secondly the feedback of the vortex shedding on the recirculation
zone leads to a sinusoidal fluctuation of the lateral bubble shear layers.
Therefore, this class of wake instability is characterized by unsteady
motion of a recirculation zone. More downstream, the large-scale ed-
dies arrange in a vortex street-like pattern similar to a VS case.
SB - Steady Bubble Wake
For a further decrease of the momentum deficit the recirculation bubble
in the lee of the obstacle stays almost completely stable. The separation
of large-scale vortices does not occur anymore. Nevertheless, smaller-
scale eddies (which are still larger than the flow depth) may grow in
the lateral shear layers, so the forcing mechanism is of type B for a SB
wake.

Figure 2.5 shows typical flow pattern of shallow wake instabilities to exem-
plify the stability classes VS and SB. Contrary to the impressive photographs
of v. Kármán vortex streets (cf. e.g. van Dyke, 1982), where streaklines can
easily be visualized, the flow pattern in shallow turbulent flows is more blurred
and fuzzy. This results from the modified transport mechanisms in shallow tur-
bulent shear flow compared to unbounded laminar plane flows. The turbulent
diffusive transport of tracer mass due to small-scale 3D fluctuations dominates
the molecular diffusion of the laminar flow. Also dispersive effects due to the
depth-average visualization and modelling of shallow turbulent flow play an
important role in loosing visual clarity, especially the retardation of mass in
the viscous boundary layer close to the bottom in combination with the depth-
integrating optical access may obscure the detail of the 2D flow structures.

The characteristic properties of the different stability classes of shallow
turbulent wake flows are discussed in Part II of this work. There, a special
focus is on the near-field topography of the time-mean wake flow including the
recirculation zone and the region of large-scale vortex generation. The wake
flow is described by the development of its geometric (e.g. wake half width δ),
kinematic (e.g. centerline velocity deficit usc), and dynamical properties (e.g.
TKE, Reynolds stresses). We also quantify the momentum and mass transfer
both along the wake centerline (employing LDV-LIF) and over the whole wake
(employing PIV-PCA).

The damping effect of bottom friction on the growth of the wake and there-
fore on the evolution of the large-scale 2D vortical structures is illustrated in
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(a) VS - vortex street-like instability (b) SB - steady bubble instability

Figure 2.5. The instability of a shallow turbulent wake flow behind a circular cylinder is
shown for a base flow with h = 17mm and Reh = 2.100. Viewed from an oblique angle, the
flow direction is from the bottom to the top of the picture into the picture plane. For the
classification we employ the wake stability number S given by (2.6). (a) Vortex street-like
(VS) instability with S = 0.15 – (b) Steady bubble (SB) instability with S = 0.69

Figure 2.5(a) in the near and far field of a vortex street-like shallow wake,
whereas Figure 2.5(b) shows the suppression of large-scale instabilities at all.
The transfer of kinetic energy from the mean flow into the quasi 2D turbulent
motion of the large-scale eddies, as well as the further transfer of TKE into
larger wave numbers and its dissipation is mirrored in the turbulence structure
of a shallow wake flow instability. The role of the large-scale 2D vortical struc-
tures and their interaction with the small-scale turbulent fluctuations can be
clarified from the spectral distribution of turbulent kinetic energy over a wide
range of wave numbers kw (or frequencies f).

Flow separation. The strong initial instability mechanism of topographic
forcing (type A) characterizes primarily the shallow-wake-flow class of vortex
street-like instability (VS), but also plays an essential role for the class of
unsteady bubble wakes (UB). Introduced by an obstacle disturbing the plane
shallow base flow, large eddy structures are generated periodically, and while
they are advected downstream in the wake, they are damped, since their kinetic
energy is dissipated under the influence of bottom friction. In the UB case, the
region, where such large-scale instabilities are generated, is located somewhat
downstream in lee of the obstacle, thus opening a flow region attached to the
obstacle, which shows a more stable motion. This region, consisting of the
recirculation zone and its lateral shear layers, significantly differs from the
convectively unstable region in the wake far field with respect to transport of
mass and momentum; for instance, the mass exchange between recirculation
bubble and ambient flow is reduced.
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Leder (1992) distinguished two different types of flow separation in wakes
of axisymmetric bodies, which we can associate with specific instability regimes
and apply them to the different stability classes of shallow wake flows.

Separation of first kind denotes the classical separation of a wall-bounded
shear layer; the separation will not necessarily lead to a roll-up of the boundary
layer and the shedding of large-scale eddies. The occurrence of a boundary layer
separation of first kind requires the following pre-conditions:

• adverse pressure gradient in flow direction, ∂p/∂s > 0,
• viscous effects in the fluid are important, ν 6= 0.

We will inevitably observe such separations of the wall-bounded shear lay-
ers in every turbulent wake flow with a recognizable initial momentum deficit.
In the case of a vortex street-like shallow wake, the separated shear layers im-
mediately roll-up to form the characteristic large-scale eddies, that alternately
shed and advect downstream in a vortex street. Contrarily in the UB case, the
boundary layers separated from the obstacle steadily demarcate both sides of
a recirculation zone; these more stable shear layers also nourish smaller-scale
2D vortices, which eventually grow while advected in the shear layers. Both
shear layers merge at the downstream end of the recirculation bubble, where
in the UB case again large-scale structures are generated, whereas they are
suppressed in the SB case.

The generation of large-scale vortical structures at the end of the recircu-
lation zone, and their shedding and downstream advection is implied in the
separation of second kind, which has to fulfill the requirements of a separation
of first kind and additionally:

• two inflection points in the lateral velocity profile u(y),
• interaction of the separated shear layers on both sides of the recirculation

zone.

The occurrence of a second inflection point in the transverse velocity profile
is a characteristic feature in the near field also of a shallow turbulent wake.
In general, linear stability analyses of unbounded wake flows as well as the
investigations of Chen & Jirka (1997, 1998) on shallow wake flows make use
of the far field velocity distribution, which shows transverse profiles u(y) with
just one inflection point.
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Brief introduction to non-intrusive flow measurement

techniques

Non-intrusive measurement techniques for velocity and scalar quan-

tity in water flows. The examination of large-scale coherent vortical struc-
tures in a shallow turbulent near-equilibrium shear flow required elaborated
measurement techniques. Since the coherent flow field is very sensitive to dis-
turbances, only non-intrusive devices could be employed. Due to the multi-
scale nature of the flow under examination, even using former leading-edge
technology it was impossible to meet all necessities with respect to spatial
and temporal resolution within a single measurement system. The turbulence
characteristics of the bottom-induced shear flow (Kolmogorov or Taylor mi-
cro scales of length and time) demand to realize a high temporal and spatial
resolution (cf. Sections 5.3.3 and 7.1.3). Since the time scale of the coherent
flow field usually is several orders of magnitude larger than the micro scales
of turbulence, high data rates over long periods of time have to be sampled to
resolve the whole wave number range of the process. Similarly, due to the large
horizontal dimension of the large-scale structures a large field of observation
has to be resolved in great detail. The combination of a high temporal and
spatial resolution and an extended window of observation both in time and
space leads to a huge amount of information to be recorded, processed and
analyzed. The need for coincident observation of velocity and mass fields leads
to an even more complicated system.

Instead of tackling the measurement problem as a whole, a stepwise ap-
proach was considered to be more appropriate, as suggested by the spatial
duality of small-scale turbulence and large-scale coherency of shallow turbu-
lent wake flow fields. In order to obtain the horizontal flow velocities in high
temporal resolution, as a single-point measuring technique a 2-channel Laser-
Doppler Velocimetry system (LDV) was employed. The intersection of two fo-
cussed laser beams defines a very small measurement volume. Micro particles
advected with the flow pass the interfering laser beams and reflect Doppler-
shifted signals, which allow for calculating its velocity component. The same
incident laser beams and the same receiving optics are used to obtain mass
concentrations with a Laser Induced Fluorescence technique (LIF). A low-
concentrated tracer dye is excited by absorbing monochromatic photons of the
high-intensity laser light to emit part of the absorbed energy frequency-shifted
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usually at longer wave-lengths. The mass concentration of the dye tracer in
the measurement volume can be inferred from the intensity of the emitted
fluorescent light. In Chapter 4 more detail will be given on the measurement
techniques and the LDV and LIF systems employed to obtain pointwise infor-
mation of the flow velocity and mass concentration, as well as on combining
both systems for coincident measurements, which allow to compute mass fluxes.

In order to examine the large-scale vortical structures, that comprise the
coherent flow field of a vortex street-like (VS) or unsteady bubble (UB) shallow
wake, it was crucial to capture the spatial interrelation of the flow field. For this
purpose, whole-field measuring systems were necessary, which did not need to
provide a high resolution in time and space, but large windows of observation.
To obtain the appropriate velocity fields of the shallow wake flows a Particle Im-
age Velocimetry (PIV) system was employed. Also this measurement technique
is based on the observation of small floating particles, which are illuminated in
a plane which is usually defined by a laser light sheet. Images are recorded at
a given resolution and frame rate depending on the camera and digitization.
Using image analysis techniques the images are divided in smaller subregions.
From correlating the same subregion in successive images the average velocity
in each subregion can be calculated. By combining the individual subregions
the flow velocity field can be obtained over the whole area of observation, in
which obviously the spatial resolution now also depends on the algorithms of
segmentation and correlation. Since we are interested in the mass transport
related to the large-scale coherent structures, as a second whole-field measure-
ment technique we apply another quantitative image processing technique, the
Planar Concentration Analysis (PCA). Making use of the attenuation of inci-
dent light due to a dilute dye tracer injected to the flow, the mass distribution
in the flow field can be evaluated with reasonably high spatial resolution in the
horizontal plane. In Chapter 3 both measurement techniques will be explained
in more detail. In Section 11.2 we describe analysis techniques to calculate the
mass transport within the coherent flow both directly from the flow fields of
velocity and mass obtained with PIV and PCA and from a numerical particle
tracking based solely on the velocity fields.

Table 3.1. Flow velocities u and mass concentrations c in shallow turbulent free-surface wa-
ter layers were observed throughout this study employing various non-intrusive measurement
techniques. From coincident measurements of u and c or from appropriate post-processing
of the data also mass fluxes were obtained.

flow velocity mass concentration

pointwise LDV LIF

planar PIV PCA
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Table 3.1 lists the non-intrusive measuring techniques applied in this re-
search project. The pointwise and planar measuring systems for flow veloci-
ties, LDV and PIV respectively, are off-the-shelf systems, which are especially
adapted to the shallow flow conditions. Both measuring techniques used to
analyze the mass concentration within the flow are developed and designed to
meet the special needs of laboratory examination of shallow flows.

Introductory optics for flow measurement techniques. Measurement
and analysis techniques for the non-intrusive observation of flow quantities
utilize detailed knowledge of various fields of optics. For some questions it
may suffice to rely on geometrical optics, for instance in order to represent
the effects of reflection and refraction in the optical path of a LDV system.
On the other hand, all applicable measurement systems involve the use of
very small devices1, which are vital for the specific techniques. To obtain flow
velocities, LDV or ultrasonic systems need small tracer particles, for which
Doppler-shifted frequency signals can be evaluated. It is therefore essential
to capture the wave nature of light in the electromagnetic theory of classical
physical optics. Furthermore, the quantum-mechanical treatment associating
the wave nature to its particle behavior is needed especially for the evaluation
of scalar concentrations, which both directly work on absorbtion and emission
processes in LIF and necessitate to quantify the attenuation due to scattering
by flow constituents and due to other photophysical and photochemical effects.
Various spectroscopic methods are extensively used in chemistry to examine
the structure of unknown molecular combinations; for more basic information
the reader is referred to textbooks, for instance Hesse et al. (1995).

Concerning the interaction of light and matter we can distinguish an elastic
behavior from an inelastic behavior. In the former case a light wave is redi-
rected without otherwise altering it, whereas in the latter case also a change
in frequency and wavelength occurs. The reader is referred to Figure 3.1 for
a concise overview of selected light-matter interactions, as they are relevant
within the measurement techniques employed throughout these studies.

If the quantized radiant energy hfa of a photon2 matches the energy nec-
essary to bring an atom from its ground electronic state to one of the upper
electronic states, the atom will “absorb” the light, making a quantum jump
to that higher and less stable state. In a dense arrangement of atoms (esp. in
solids and liquids) the excitation energy will be transferred via collisions of
atoms into thermal energy almost instantly. This process is therefore called
dissipative absorbtion. We will address this effect in the context of light at-
tenuation in Sections 3.2.1 and 4.2.3. In a less dense concentration an excited

1 The dimensions of these devices are smaller than or of the order of the wave length of the
illuminating light dP . O (λ), e.g. tracer particles for LDV with dP of 1 µm to 10 µm.

2 Here h is the Planck’s constant.
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quantumoptical effects of light scattering and absorbtion

elastic scattering inelastic scattering absorbtion

Mie

scattering
Rayleigh

scattering

spontan.

Raman

scattering

stimulated

Raman

scattering

fluores-

cence

dissipative

absorbtion

Figure 3.1. A schematic overview of light-matter interactions on the molecular scale
presents quantum optical effects, which are relevant in the context of the non-intrusive
measurement techniques for flow velocity and mass concentration throughout this work.

atom may transit to a lower state and thus re-emit part of the absorbed energy.
If radiant energy hfe is re-emitted in the visible frequency range, one speaks
of fluorescence3, which we use for high-resolution concentration measurements
with LIF described in Section 4.2.

In contrast to the absorbtion and emission processes, which affect the
electronic states of atoms, there are less energetic light-matter interactions,
where the incoming radiation alters the vibrational or rotational levels of mole-
cules. These are often referred to as scattering processes. A detailed presen-
tation of the various quantum optical processes can be found in the classical
textbooks on optics (e.g. Hecht, 2002; Born & Wolf, 1964), we suggest
Bergmann & Schaefer (1987) for a thorough discussion. Referring to Fig-
ure 3.1 we will briefly mention the prime scattering processes with respect to
the attenuation of light. For the specular reflection at optically smooth sur-
faces and diffuse reflection at a rough or wavy surface4 the laws of geometric
optics will apply as well as for the refraction of light due to variation of the
optical density (i.e. variation of the refraction index n). The attenuation due to
diffraction is not a macroscopic effect and, thus, can only be explained qualita-
tively using the classical electromagnetic wave theory of light. Furthermore, to

3 Whereas fluorescence involves the direct transition between two singlet states, phospho-
rescence describes a non-radiative intersystem crossing from an excited singlet state to
a triplet state followed by a radiative transition to the ground state (e.g. Hesse et al.,
1995). Consequently, the less energetic phosphorescent radiation consists of a lower fre-
quency (near infra-red), longer wave length emission.

4 The dimension of roughness has to be large compared to the wave length λ of the incident
light. This is also applicable to large particles where dP � λ.
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quantitatively predict the spectral distribution of energy we need a quantum
mechanical approach.

If we assume a small particle to interact with a bundle of light waves5,
two cases of elastic scattering can be distinguished depending on the relative
size of the particle with respect to the wave length. First, if the dimension
of the particle is slightly larger than the wave length of the incident light or
at least of the same order of magnitude (dP & O (λ)), Mie-scattering occurs.
The light diffracted at both sides of the particle can be assumed to interfere
in an either constructive or destructive way. Thus, the scattered light is of
the same frequency as the incident light, but the re-emitted light undergoes
changes in phase, amplitude, and polarization. The intensity of the scattered
light depends on the diffraction angle, the forward scattered portion may be
2 orders of magnitude more intense than the backward scattered light. This
can be observed for particles with diameters up to 10 µm, e.g. for aerosols in
the atmosphere or suspended colloids in water. If the dimension of the particle
is small compared to the wave length of light, dP � λ, Rayleigh scattering
occurs. A very small particle in an oscillating electromagnetic field of incident
light can be thought of as a small dipole stimulated to oscillate with same
frequency and phase. It thereby emits electromagnetic waves perpendicular to
the incoming waves.

Also inelastic scattering can occur on the molecular level. Similar to atoms,
also molecules can absorb photons (in the visible or ultraviolet range) through
the mechanism of electron transition. But molecules can also receive energy
in the microwave and infrared wave lengths and convert it to kinetic energy
via changing their rotational or vibrational motion. We may think of a mono-
chromatic source and a photon of the energy h f0 colliding with a molecule in
its ground state. The molecule will temporarily absorb the photon and reach
a virtual state (also called an intermediate state), but since this is a highly
unstable state, it has to immediately transit to a stable state again. If the
molecule returns to its initial ground state, it will emit the total absorbed en-
ergy in a photon of the same frequency f0; again, this elastic process is called
Rayleigh scattering (cf. Figure 3.2(a)). If the molecule returns to a more en-
ergetic vibrational or rotational level of the ground state h fM , it will emit a
photon of the energy h (f0 − fM ) = h fS , where fS is the Stokes shift. If, on
the other hand, the molecule has been in an excited state (e.g. heated) ini-
tially, it is also possible that it will return to a lower vibrational or rotational
level from the virtual state emitting the energy h (f0 + fM ) = h faS , this is
called an anti-Stokes transition (cf. Figures 3.2(b) and 3.2(c)). The emission
of frequency-shifted energy is called spontaneous Raman scattering. In Raman

5 We assume a bundle of light waves of a given amplitude, frequency and phase, i.e. mono-
chromatic and coherent light of a fixed intensity.
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(a) Rayleigh scattering (b) Raman scattering with Stokes transi-
tion

(c) Raman scattering with anti-Stokes
transition

(d) Stimulated Raman Scattering

Figure 3.2. The energy-level diagrams of elastic Rayleigh scattering and different types of
inelastic Raman scattering each show the initial energetic state of a molecule hit by a photon
h f0 (on the left), the temporary absorbtion of the photon and transition to a virtual state
(in the middle part), and the return to a stable state accompanied by light emission (on the
right). (a) Rayleigh Scattering : spontaneous elastic scattering of an incident photon with
the same frequency f0. – (b) and (c) Spontaneous Raman Scattering with Stokes and anti-
Stokes transition, respectively. – (d) Stimulated Raman Scattering : a molecule is excited
by a photon of h f0, and while in the intermediate state, a second photon of h fS stimulates
the coherent emission of two photons. (after Bergmann & Schaefer, 1987, p.854)

spectroscopy the differential frequencies fM , which are characteristic for dif-
ferent materials, are obtained from the emission spectrum of a monochromatic
excitation (usually by a laser source). Note, that Raman scattering by Stokes
and anti-Stokes shifts is not characterized by a specific emission spectrum of
wave lengths (as is fluorescence), but by a specific spectrum of frequency dif-
ferences fM (see also Section 4.2.1). Finally, at high incident intensities we
can also encounter stimulated Raman scattering (cf. Figure 3.2(d)). We shall
assume that a molecule has just absorbed a photon of the energy h f0. While it
is still in a virtual state, a second photon h fS hits the molecule and stimulates
it to emit 2 photons h fS of the same phase, frequency and polarization. Thus,
the emission of coherent light is stimulated. Stimulated Raman scattering is
the core effect for setting up high-intensity coherent sources, namely LASERs6,
extending from IR to UV radiation.

6 This is the abbreviation for “Light Amplification by Stimulated Emission of Radiation”.
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Shallow turbulent wake flows cover a wide range of spatial and temporal scales
ranging from the small turbulence scales of the plane bottom shear flow up to
the large-scale coherent flow field induced by the obstacle or island. If we focus
our interest on the development of quasi 2D large-scale eddies, then we need
information with less temporal and spatial resolution compared to boundary
layer turbulence, but with still reasonable resolution in a wide area of observa-
tion and over an extended duration. Field-wise measurement systems for flow
velocity and mass concentration are employed, which are especially adapted or
developed for the shallow water facility at the Institute for Hydromechanics,
University of Karlsruhe, and take full advantage of the shallowness of the flow.

3.1 Particle Image Velocimetry

3.1.1 Introduction to PIV analysis

Both in basic research and engineering applications of fluid dynamics informa-
tion is needed not only about the temporal development of a flow, but also on
its spatial correlation. In order to address the spatial organization of a flow also
in its temporal evolution, new measurement techniques have been developed
in the past two decades. The availability and rapid increase of computer power
facilitated the introduction and spreading of planar and even volumetric mea-
surement systems applying image analysis techniques to obtain velocity distri-
butions of the observed flow section. Nowadays, such measurement systems are
widely used in aero- and hydrodynamic laboratories for academic research and
industrial development. Turn-key systems providing a package of appropriate
devices for image capturing and storing, light sheet generation, system control,
and data processing are available from a variety of manufacturers.

The basic idea of such velocity measurement systems is as simple as its real-
ization in measurement hardware and software code needs skill and endurance.
In order to examine the motion of a flow, particulate or even soluble tracers
are added to the flow. At successive instances in time of known interval images
are taken and analyzed in order to obtain the displacement of the tracers in
time, and thus, to obtain velocity vectors. Grossly, two main strategies can
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be distinguished in the analyses. First, individual particles can be located and
identified in different exposures, and thus tracked in their movement in the
flow. This so-called Particle Tracking Anemometry (PTA) or Particle Track-
ing Velocimetry (PTV) demands a low particle density compared to the image
resolution in order to trace each particle. The second approach is more prob-
abilistic as it resolves the mean displacement of a structure of tracers (the
“signature” of a small group of tracer particles) employing an auto- or cross-
correlation algorithm on successive images fragmented into small interrogation
areas. This general approach—known as Particle Image Velocimetry (PIV)—
requires higher concentrations of particles and appropriate image resolutions.
Combined techniques which employ a PIV algorithm on a course segmentation
as an estimate for the following PTV algorithm lead to an expanded dynamic
range and higher accuracy of PTV (cf. Cowen & Monismith, 1997). We will
not reiterate issues of theory, measurement equipment, and analysis tools re-
lated to Particle Image Velocimetry in this work, since there is an extensive
amount of high-quality literature available. Instead, the reader is referred to
textbooks like Raffel et al. (1998), who also present a categorized bibliog-
raphy, or to review articles like Adrian (1991).

Besides holographic 3D PIV techniques, planar velocimetry systems gener-
ally require a light sheet to establish a measurement plane, which nowadays is
always generated by a laser tube operated either continuously or in a pulsed
mode. Only those tracer particles are visible to the observer that are advected
by the flow in the light sheet, which therefore defines the measurement plane1.
Because of strong attenuation effects in water flows high laser power is needed
to produce a light sheet of still varying intensity, moreover, also the thickness
of the sheet will expand due to scattering in the water body. Therefore, in
water flows the area of observation is restricted to a lateral extent of few 10th
of centimeters, when employing a laser light sheet. Since for a number of rea-
sons some classes of flows cannot be scaled down as to meet the dimensions
of a laser light sheet, laboratory examinations of such flows in scale models
exclude the application of a common PIV system featuring a laser sheet il-
lumination. Obviously, shallow free-surface flows with a significant large-scale
coherent motion belong to such flows.

Using suspended particles a measurement plane can be generated by a laser
light sheet at an arbitrary position in the flow volume. Using particles floating
at or near the free surface will limit the movement of the tracers to the water
surface and therefore defines a measurement plane without employing a laser
light sheet. The idea of applying a laser-free PIV measurement system to obtain
surface velocity fields is nicely straightforward, and has already been reviewed

1 A laser light sheet actually defines a measurement volume of finite thickness. Albeit the
light sheet is thin compared to its lateral extent, scaled in diameters of the tracer particle
it may still comprise a thickness of several orders of magnitude.
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some years ago by Adrian (1991). Applications of surface PIV to large-scale
laboratory flows have been reported recently e.g. by Fujita et al. (1998),
Weitbrecht & Jirka (2001), v. Carmer et al. (2001), Müller et al.
(2002), and Muste et al. (2004). The restrictions to the application of a
surface PIV measurement system are twofold. From the hydrodynamical point
of view they will focus on the question, if and to what extent the surface
velocity field is adequate for characterizing the flow.2 On the other hand, a
variety of new technical problems will occur concerning for instance the proper
illumination, control of exposure, kind of tracer, or data pre-processing. Some
of these issues have been addressed by Kühn (2000) and Weitbrecht et al.
(2002).

3.1.2 Technical equipment

In order to obtain large-scale surface velocity fields in the shallow wake flows
under observation a turn-key PIV measurement system was employed that con-
sisted of standard components—a PC, software for system control and image
analysis, frame-grabber card, camera, and timing unit—provided and inte-
grated by LaVisionr. Further components have been added to allow for high-
quality surface PIV measurements, namely flood-light illumination, tracer par-
ticles, and a particle dispenser. The whole PIV system was described in detail
by Kühn (2000) and Weitbrecht et al. (2002). The left side of Table 3.2
summarizes the main components of the measurement system.

A 12 bit gray-scale, 1280 ∗ 1024 pixel digital camera (LaVision’s Imager
3 ) was mounted directly above the water surface in a height of about 3 m. A
flat-field, ultra wide angle (f = 15 mm) f-mount lens allowed for an area of
observation of 1.2∗1.4 m. White-light photo flood-lights were carefully adjusted
to provide a diffuse illumination of homogeneous luminance in the field of view
without any reflections from the water surface. Upstream of the field of view
the flow was evenly seeded with polypropylene beads over a width of 1.6 m
using a specially developed particle dispenser capable of variable seeding rates
to obtain an appropriate particle density at different base flow velocities. The
floating PP tracer particles (ρ = 0.9 g/cm3) had been specially coated with
black lacquer to minimize its tendency to agglomerate. With a diameter of
3 mm a particle occupied an area of 4 to 5 pixel in the image plane, which
was sufficiently large to avoid jitter in the image analysis due to peak-locking

2 Contrary to laser sheets that can be positioned at different flow depths to obtain vertical
distributions of horizontal flow fields and, thus, to calculate vertical averages, in surface
PIV measurements the vertical distribution of flow properties has to be known a-priori. In
equilibrium bottom shear flows the transverse distributions of the mean and rms velocity
components are well described semi-empirically (cf. e.g. v. Carmer, 1998), but for large-
scale coherent flows or for flows containing large-scale vortical structures additional efforts
are often necessary (cf. e.g. v. Carmer et al., 2003).
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Table 3.2. Instrumentation of the field-wise measurement systems for surface velocity fields
(PIV) and for depth-averaged mass concentrations (PCA)

PIV camera LaVision Imager 3

equivalent to PCO SensiCam

type
cross-correlation
camera

CCD chip
2/3”, grade 0,
gray-scale

size 1280 ∗ 1024 pixel
dynamic range 12 bit
spectral range 300 - 800 nm

modes of operation
single-frame mode,
double-frame mode

minimum time
between frames

single-frame: 125 ms,
double-frame: 300 ns

electronic shutter exposure > 100 ns

Nikon lens
flat-field, ultrawide,
f-mount

focal length f = 15 mm
max. aperture f# = 3.5

area of observation 1.4 ∗ 1.2 m
frame rate 7 Hz

PC for system control,
data storing, and data processing

personal computer, dual-processor P-III
500 MHz, 1 GB RAM, two 18 GB SCSI
hard disks, Ethernet card, RS 232
interface, frame-grabber card,
programmable timing unit

frames per run 300
OS Windows NT
software DaVis 5.4, LaVision

tracer particles

material
polypropylene beads
with black coating

diameter 3 mm
density 0.9 g/cm3

illumination

4 photo floodlights 1,000 watt each
spectrum artificial day light

PCA camera Siemens SiColor C810

type
PAL/SECAM video
camera

CCD chip 1/2”, color
size 768 ∗ 576 pixel
dynamic range 3 ∗ 8 bit
signal-to-noise ≥ 46 dB
lens c-mount
focal length f = 10 mm
aperture (applied) 2 ≤ f# ≤ 8

area of observation 1.6 ∗ 1.2 m
frame rate 25 Hz

data storage

digital video recorder
Mini DV-recorder
Sony GV-D 900 E

tape Mini DV

frames per run
limited by tape
length

image transfer to PC

import via IEEE 1394 and digital video
card “DV Studio 7” (Pinnacle Systems);
save AVI–stream to hard disk, extract
uncompressed TIFF–files with MainActor
video editor

tracer

colorant
Sicovit Amaranth 85
E123, BASF

C.I. 16185 Acid Red 27
maximum absorption 520 nm
solubility 80 g/l
maximum
concentration

≤ 15 mg/l

molecular diffusivity O
�
10−9m2/s

�
illumination

4 photo floodlights 1,000 watt each
spectrum artificial day light

diffused illumination
conical cotton cloth
diff.
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effects. The camera was connected fiber-optically to the frame-grabber card of
the PC. Images were taken in single-frame mode and streamed with a rate of
7 Hz to the RAM of the computer, up to 300 images could be stored in a single
run allowing for sequences of up to 45 s, before the images had to be read
out to hard disk. The software-package DaVis was able to control the camera
settings and to trigger the camera via a programmable timing unit. Also the
data processing was performed using the Davis software. An ‘adaptive multi
pass’ cross-correlation algorithm—using a final size of 32 px ∗ 32 px for the
cross-correlation window and an overlap of 50%—provided velocity fields on
a regular 64 ∗ 80 grid with a physical spacing of about 18 mm. For further
analysis and post-processing the vector fields containing the horizontal velocity
components were exported as plain text files.

3.2 Planar Concentration Analysis

For the non-intrusive field-wise observation of mass concentrations in gaseous
and liquid flows planar laser induced fluorescence (PLIF) techniques are ap-
plied. The broad variety of applications comprises laboratory and prototype
flows in scientific and engineering research, where mixing or exchange processes
are relevant, e.g. hydro- or aerodynamics, mechanical, chemical, or environ-
mental engineering. Since the excitation of a fluorescent material requires high
intensities of incident radiation in wave length close to the maximum absorp-
tion wave length, usually a laser light sheet will provide the necessary energy.
In hydrodynamic research such laser sheets are restricted to small areas, as
already mentioned in the previous section about PIV measurement systems.
In general, PLIF will be not the first choice for large-scale laboratory investi-
gations. However, if an increased thickness of the sheet, i.e. a reduced spatial
resolution, and strong attenuation are acceptable, PLIF is capable also of large-
scale flows, as was shown for instance by Nash et al. (1995) for a thermal
plume discharge in shallow tidal flow, and by Chen & Jirka (1999) for a
shallow plane jet.

In order to obtain depth-averaged scalar fields of mass concentration in shal-
low free-surface flows, we developed a Planar Concentration Analysis (PCA)
system based on image analysis. An easy-to-use experimental setup allows for
quick conduction of measurements. The fully automated analysis provides field-
resolved conversation algorithms of color intensity to mass concentration also
representing their non-linear relation.

Applications of the PCA system for the depth-averaged analysis of field-wise
distributions of mass concentrations in shallow laboratory flows have been re-
ported by the Environmental Fluid Mechanics Group, University of Karlsruhe.
v. Carmer et al. (2001) applied the PCA on the identification of large-scale
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vortical structures in shallow vortex street-like wake flows. Rummel (2002);
Rummel et al. (2002) examined the plume spreading in a shallow equi-
librium shear flow with different turbulence characteristics. Kurzke (2002);
Kurzke et al. (2002) applied the same algorithms to analyze the retardation
of suspended matter in groin fields.

3.2.1 Optical background and light attenuation

Remote sensing technologies opened up the promising opportunity of field-
wise examination of earth’s water bodies for oceanographers and limnologists.
For the analysis and interpretation of remotely sensed optical data, detailed
knowledge of aquatic optics, or hydro-optics, is essential. The photons of direct
sun light and diffuse sky radiation propagating through natural water bodies
firstly encounter elastic scattering and absorption by water molecules, resulting
in light attenuation of pure water. Secondly, the diverse constituents of natural
(or real-world) water bodies result in a variety of additional light-matter inter-
actions, also leading to further attenuation. These interactions, and thus also
the accompanying attenuation, are wave length-dependent in the visible wave
spectrum. Therefore, the kind of constituents ultimately determines the water
color and other optical properties of the water body. Since the organic and in-
organic constituents, also called color producing agents, are indicators for the
ecological status of the aquatic environment, strong efforts are currently made
to infer the kind and concentration of the various constituents from remotely
sensed images in order to qualitatively and quantitatively survey the changes
in water quality.

The physical and thus optical complexity of natural aquatic environments
strongly depends on terrestrial influences. Instead of distinguishing salty, fresh,
and brackish waters, in aquatic optics water bodies are commonly divided into
Case I and non-Case I waters. Far away from land masses in the offshore water
bodies, in Case I waters, phytoplankton and subsequent products of its life cy-
cle is the main constituent, that determines the optical properties of the water
body. Modelling of the propagation of light only requires the knowledge of the
phytoplankton concentration. The inverse modelling of the water constituents
in Case I waters needs the calculation of the concentration, but not the iden-
tification of the kind of constituent (namely phytoplankton). On the contrary,
non-Case I waters of coastal areas and lakes besides phytoplankton are also
influenced by additional terrigenous (and anthropogenic) constituents, espe-
cially by inorganic suspended matter and by dissolved organic matter. Coastal
and limnological optics has to deal with various kinds of constituents influenc-
ing the optical properties of the water body. Modelling of light propagation in
non-Case I waters has to represent a variety of optically relevant constituents
as well as additional influences resulting e.g. from the bottom in optically
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shallow water. The identification and quantification of different constituents in
coastal and fresh waters from remotely sensed data is a future challenge, for
which there is an urgent demand, since coastal areas are crucial for social and
economic development of mankind3.

Among others, Kondratyev & Filatov (1999) and
Pozdnyakov & Grassl (2003) provide further contemporary readings
on the topic of remote sensing for the analysis of inland and coastal waters.
In the remainder of this section, we will present a brief overview of some
optical properties of natural water bodies and light propagation in the aquatic
environment. We restrict this overview to conceptual basics, that are helpful
in the context of laboratory shallow flow research projects. There is a broad
variety of monographs and papers dealing with aspects of hydro-optics, we
suggest for example to study Bukata et al. (1995) or recently Arst (2003)
for a sound and scientific introduction to the field.

For the field-wise analysis of the mass concentration in laboratory shallow
wake flows, presented here, we encounter difficulties similar to those of oceanog-
raphers and limnologists analyzing remotely sensed optical data. As in Case I
waters we make use of just a single water constituent, which is optically rele-
vant. But as in non-Case I waters the bottom may influence the propagation
of light in the experimental setup.

Light attenuation in natural water bodies. The photon flux Φ propagat-
ing through the atmosphere and the aquatic environment can be quantitatively
described using the term radiance and irradiance. The radiance L in a specific
direction at a point in the radiation field is defined as the radiant (energy)
flux4 Φ at that point per unit solid angle dΩ and per unit area dA projected
at right angles to the photon beam (cf. Figure 3.3),

L =
d2Φ

dA dΩ
in Wm−2sr−1, (3.1)

where the radiant flux per unit solid angle is called radiant intensity I = dΦ
dΩ .

The unit solid angle is given in steradian by dΩ = sin θ dθ dφ, and the unit area
by dA = r2Ω in spherical polar coordinates (polar angle θ, azimuthal angle φ,
radius vector r). If the photon beam is impinging on or emanating from a unit
surface dS tilted to the direction of the light propagation, i.e. dS = dA/ cos θ,
then the radiance of a light beam becomes

L (θ, φ) =
d2Φ

dS sin θ cos θ dθ dφ
. (3.2)

3 For instance, about two thirds of the large cities of the world are located in coastal areas.
4 The radiant flux Φ is defined as the time rate of flow of radiant energy, Φ = dξT

dt
in J s−1

or W , where the total energy of the polychromatic photon beam is the photon energy
times the number of photons in the beam ξT =

PN
i=1 h fi in J .
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Figure 3.3. A conceptual sketch illustrates the
radiance L at a point P, that results from a ra-
diant flux Φ of radiant (energy) intensity I =
dΦ/dΩ from direction D (with solid angle dΩ).

The irradiance E refers to the radiant flux Φ per unit area at a point within
the radiative field integrated over all directions of a hemisphere,

E =
dΦ

dS
in Wm−2. (3.3)

Thus, the radiant flux is the total irradiance on the whole surface area.
When passing through a mass-containing volume, i.e. a medium different

from the vacuum, light is attenuated due to various kinds of light-matter in-
teractions. An incident radiant flux Φ of photons will propagate through a
water body of infinite thickness ∂r, thereby suffering from attenuation e.g.
due to absorbtion of photons by matter, so that the emanating radiant flux is
Φem = − (∂Φ− Φ). To give an illustrative derivation we will assume a mono-
chromatic light source, the water body to consist of pure water, and restrict
the processes of attenuation to the absorbtion of photons. The radiant flux is
reduced by ∂Φ due to the photon energy absorbed by water molecules. The
absorbed radiant flux is expected to be proportional to the incident radiant
flux and to the length of the optical path,

∂Φ = −α′ Φ∂r , (3.4)

as was first proposed by J.H. Lambert (1728 - 1777). If we allow the optical
medium to vary its density, then the probability of a photon of being absorbed
along ∂r increases with higher concentrations of the absorbing matter. It was
A. Beer in 1852, who first reflected this dependency, and suggested an ab-
sorbtion coefficient α′ = α c.
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Integration of (3.4), keeping α and c as constants, then leads to the well-
known Lambert-Beer law of absorbtion,

Φ (r, c) = Φ (0, c) e−α c r . (3.5)

From (3.5) we see, that the attenuating effect of the water body depends on
the product c r. For a given value of c r the attenuation should be the same
for a thick layer of a low-concentrated medium, or for a thin layer of a high-
concentrated medium. This holds as long as inter-molecular exchange processes
or matter-matter interactions can be excluded. For higher concentrations of
matter we find significant deviations from the Lambert-Beer law, as will be
demonstrated in Section 4.2 for the validation of the LIF measurement system.
The linear approach of the Lambert-Beer law can, thus, be regarded to be valid
only in the limit of low concentration (cf. also Bergmann & Schaefer, 1987,
p. 263). We will discuss the restrictions of the Lambert-Beer law in more detail
in Section 4.2, where we will also introduce a non-linear expansion to cope with
the mutual influence of fluorescent dye molecules in higher concentrations.

Since dissipative absorbtion describes a process of energetic interaction of
light and matter, the absorbtion coefficient α and thus the absorbance—i.e.
the ability of molecules to absorb light quanta from the visible spectrum, to
change its rotational or vibrational state, and to re-emit the acquired energy in
the far-infrared spectrum—depends on the species. More precise, besides the
material components it depends on the physico-chemical conditions of the state
of matter (liquid or gaseous), which influence the moveability of molecules and
thus the absorbance. To a given species of matter (and to a lesser instance
to a given solution) a specific absorption coefficient can be associated, which
is independent of the mass concentration as c is low enough to prevent the
inter-molecular exchange processes to significantly influence the absorbtion of
photon energy.

However, absorbtion still depends on the second partner in the light–matter
interaction, on the light. The absorbtion coefficient of a given material is signif-
icantly dependent on the wavelength of the incident radiant flux, α′ (λ). With
the above remarks from (3.4) we obtain as a definition equation for a specific
matter

α (λ) c = − 1

Φc(r, λ)

∂Φc(r, λ)abs
∂r

, (3.6)

where the subscript c denotes a medium described by a given mass concentra-
tion, and the subscript abs denotes the attenuation due to absorption. Figure 3.4
shows the absorbtion coefficient α′ (λ) of pure water in the wavelength range of
visible light (390 nm < λ < 740 nm). Characteristically for transparent media
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we observe a rapid increase of α′ toward the near-ultraviolet (UV-A, -B, -C
390 nm > λ > 280 nm) and near-infrared range (740 nm < λ < 2.4 µm).5

On the other hand, the radiant flux is also subject to attenuation due to
scattering, and similarly to the absorbtion coefficient (3.6), the scattering coef-
ficient β′ (λ), defined as the fraction of radiant energy scattered from a beam
per unit distance as it traverses an infinitesimal distance ∂r, is mathematically
expressed as

β (λ) c = − 1

Φc(r, λ)

∂Φc(r, λ)sc
∂r

, (3.7)

where the subscript sc denotes the attenuation due to scattering. In Figure 3.4
the spectral distribution of the scattering coefficient of pure water β′(λ) is indi-
cated by out-lined symbols. In pure water attenuation due to elastic Rayleigh
scattering becomes important in the blue region of the visible spectrum.6

In general, both absorption and scattering processes are responsible for at-
tenuation. The beam attenuation coefficient γ′ (λ) is defined as the fraction of
radiant energy removed from an incident light beam per unit distance as it tra-
verses an infinitesimal distance ∂r due to the combined processes of absorption
and scattering,

γ (λ) c ≡ − 1

Φc(r, λ)

(∂Φc(r, λ)abs + ∂Φc(r, λ)sc)

∂r
. (3.8)

The beam attenuation coefficient, therefore, is given mathematically by the
sum of the absorption and scattering coefficients,

γ′ (λ) ≡ α′ (λ) + β′ (λ) . (3.9)

Besides the direct sun light also the diffuse sky light will attenuate when
passing through a water body. To describe this process we can formally replace
the radiant flux Φ by the irradiance E to obtain the irradiance attenuation
coefficient from (3.8)

K ′(r, λ) = − 1

E(r, λ)

∂E(r, λ)

∂r
. (3.10)

Again, we can decompose K ′ = K c, and assuming K and c to be depth-
invariant, the Lambert-Beer law (3.5) applies to the irradiance,

5 It is seen that pure water strongly absorbs in the red wavelength region of the visible
spectrum, an absorption band that is peripheral to stronger near-infrared absorbtion at
λ > 700 nm. Relative peak values correspond to higher harmonics of the water molecule
valence vibration at 3 µm. The absorption in the ultraviolet spectral region is inherent
to electronic transitions occurring within the water molecule. (Bukata et al., 1995, p.
118)

6 Because of the dominance of attenuation by absorption in the red region of the visible
spectrum and the balancing effects of Rayleigh scattering and absorption at small λ, pure
water displays a blue hue.
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Figure 3.4. A comparison of absorbtion coefficients α′ and scattering coefficients β′ for
pure water at T = 20◦C obtained by different authors: n (Smith and Baker, 1981), l

(Multi-Author, 1983), s (Buiteveld et al., 1994), u (Pope and Fry, 1997).
Full symbols refer to α′, out-lined symbols refer to β′ (data compiled by
Pozdnyakov & Grassl, 2003)

E (r, λ) = E (0, λ) e−K(λ) c r . (3.11)

In general, the combined specular and diffuse illumination may show a direc-
tional preference, i.e. depend on the polar angle θ, which in turn may show
a temporal dependency, so does the sun obscured by clouds possess a diur-
nal cycle. The irradiance attenuation coefficient therefore is also related to the
direction of incident light, the directional dependency can be represented in
Kspec (λ, θ) in contrast to Kdiff (λ). An average of K is obtained by weighting
with the irradiance portions resulting from the specular and diffuse illumina-
tion. When including the directional aspects of the combined illumination in
K, we can easily change from the path coordinate r to the vertical coordinate
z. Employing Snell’s law of refraction, ninc sin θinc = nrefrac sin θrefrac, the
depth is z = r cos θrefrac.7 The product K c r = K ′ r in the exponent in (3.11)
is called the optical depth.

7 Also the value of the refraction index n depends on the wavelength of the refracted light,
which gives rise to chromatic aberrations in geometrical optics (e.g. beam splitting by a
prism).
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In free-surface flows reflection of incident light at the air-water interface
reduces the value of the downwelling irradiance Ed, i.e. the sum of the radiance
propagation through the lower hemisphere, as it transits from the gaseous to
the liquid medium. The (diffuse) reflectance at a (rough) boundary is defined
as the relation between the upwelling and the downwelling irradiance,

Rdiff (r) =
Eu(r)

Ed(r)
. (3.12)

Obviously, the specular reflection of a light beam at a smooth surface is de-
scribed by the Fresnel equation. The specular reflectance can then analogously
be given as a radiance reflectance, Rspec(r) = Lu(r,θr,φr)

Ld(r,θi,φi)
. Values of Rdiff can be

associated to the water body at any depth, at a boundary like the water surface
it is often called albedo. In shallow flows the incident light may also impinge on
the bottom. Its diffuse reflectance, or bottom albedo, mainly depends on the
material, the bottom bathymetry, and the possible vegetation. If applicable,
the bottom reflectance has to be taken into account in the computation of the
light attenuation in water bodies.

To distinguish optically deep from optically shallow flows, the attenuation
length can be compared to the flow depth. The attenuation length τ is the
path distance in the attenuating medium that is required to reduce the radiant
energy of a light beam by a factor of 1/e, i.e. the optical depth equals 1. Thus,
τ(λ, z) is defined as the inverse of the total attenuation coefficient γ′(λ, z),

τ (λ, z) = 1/γ′ (λ, z) . (3.13)

Inland and coastal waters show attenuation lengths of few meters to few cen-
timeters, whereas mid-ocean waters are characterized by attenuation length of
tenth of meters.

We have strongly emphasized the spectral characteristics of the attenua-
tion processes. In the following we will omit λ in the notation for brevity. All
properties and quantities can also be regarded as spectrally averaged values
χ = (λred − λblue)

−1 ∫ χ (λ) dλ, that are usually obtained easier, and without
the use of spectrometric methods.

One of the main objectives in aquatic sciences is often not to characterize
pure water, but to examine its additional constituents. Also such scalar quan-
tities like salinity or temperature, which often are of concern to hydrodynami-
cists, can be addressed as constituents to pure water. For the interpretation of
remotely sensed optical data in marine research hydro-optical models have to
be employed, that are capable of representing the light attenuation processes
due to water molecules and due to further constituents. In Case I waters there
is only one optically relevant component besides the atmosphere and the wa-
ter column, namely the phytoplankton population and its descendants. The
chlorophyll-bearing biota are characterized by specific absorption and scatter-
ing coefficients, α′

chl and β′
chl, which strongly depend on the visible wavelength.
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In non-Case I waters, the situation becomes much more complex due to the
various constituents, that may be found in inland and costal water bodies. In
the visible and near-infrared spectrum also these constituents have individ-
ual spectral imprints. Since these constituents occur in different combinations
of species and in different concentrations, it is basically impossible to iden-
tify individual species and concentrations solely from remotely sensed data.
Hydro-optical models of non-Case I waters always group its constituents at
least as a homogeneous combination of pure water, unique suspended organic
material (represented by the chlorophyll-a concentration), unique suspended
inorganic material (represented by the suspended mineral concentration SM),
and dissolved organic material (represented by the dissolved organic carbon
concentration DOC8). The bulk optical properties of a natural water body can
then be considered as the additive result of the individual specific optical prop-
erties associated with the constituent groups present in the water column in
addition to the pure water itself:

α′ =
n∑

i=1

αi ci and β′ =
n∑

i=1

βi ci . (3.14)

Bukata et al. (1995) are generally not very confident about the applicability
of remote sensing image analysis and hydro-optical modelling to the observa-
tion of non-Case I waters and to the control of environmental impacts.

“The optically competitive organic and inorganic material comprising
inland and coastal waters, therefore, prohibits the use of chromaticity
as a single-component monitoring aid. Even if the spectral limitations of
existing satellite imaging systems were overcome, chromaticity analyses
of the upwelling radiance spectrum generally would be of little value to
any but the least optically complex of natural waters.”

Bukata et al. (1995, p. 182)

Pozdnyakov & Grassl (2003) explain that there are other optical
processes influencing the chromaticity of natural waters and its observable
derivatives like upwelling radiance Lu. Water color results, in addition to ab-
sorption and Rayleigh (elastic) scattering, also from Raman (inelastic) scat-
tering of water, from fluorescence by phytoplankton and dissolved organic ma-
terial, and in optically shallow waters from bottom reflectance as well. They
point out that the contribution of these processes of photon interactions with
the aquatic medium to water color is highly variable, since it depends on a vari-
ety of varying parameters like the concentrations ci of the diverse constituents,

8 In the decomposition process of phytoplankton yellow and brown melanoids occur that
are responsible for the yellow hue observed in inland and coastal waters. Though they are
not the main portion of the DOM, the dissolved aquatic humus is generally referred to as
yellow substance, historically also Gelbstoff, gilvin, and others.
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surface topography of the air-water interface, intensity of illumination by direct
solar and diffuse sky radiation, bottom topography and cover, or the variable
spectral signatures of the color-producing constituents. Water color is there-
fore generally nonlinearly related to the mixture ratios and dilutions of water
constituents, as they are ubiquitous in coastal and inland (non-Case I) waters.
There still is a lack of analytical models to be implemented to the hydro-optical
simulation of the aquatic environment. The inverse solution of such calcula-
tion will allow for the qualitative and quantitative description of the water
constituents also under optically complex conditions. The mathematical and
numerical tools as well as the computer capacity are available, though they
could be improved.

The vertical inhomogeneity of the constituents and, thus, of the optical
properties in the water column has to be taken into account, when evaluating
the results of hydro-optical simulations and analyses. For clearer waters the
vertical distribution of optical properties may play not a negligible role (cf.
e.g. Frette et al., 2001), and thus should be given more attention to also
in the hydro-optical simulation.

Color spaces. 9 In the visible spectrum electro-magnetic waves of a given
wavelength can be associated with a specific color, Table 3.3 lists the main col-
ors and their wavelength and frequency ranges. Thus, the radiometric concept
is related to the psycho-physiological capability of the observer. The perception
of color, and so its definition, depends on the individual impression and inter-
pretation of light of a given spectral distribution perceived by a human eye.
The perceptibility of the human retina is tri-chromatic, three different types
of photopigments in the so-called “cones” of the retina with maximum sensi-
tivities at 445 nm, 535 nm, and 575 nm make the cones responsive to different
spectral regions. The spectral sensitivity bands of the 3 types of cones are un-
evenly weighted and overlap significantly (cf. Figure 3.5). The partitioning of
light into tristimulus values usually of red, green, and blue—which was, though
observed before by other scientists, first codified in the Young-Helmholtz
law—forms the basis for the definitions of various 3D color spaces which are
employed to represent chromaticity information. Since image recording imag-
ing systems usually are based on this concept, also the color analysis of such
images has to process chromaticity information of this kind.

A given irradiance spectrum, E (λ), can be related to human vision and the
perception of color through color analyses that fold the sensitivity of the human
eye with the irradiance spectrum impinging upon it. The tristimulus values X ′,
Y ′, and Z ′ are obtained from this integration, and are employed to derive the

9 For a thorough discussion on color theory the reader is referred to
Bergmann & Schaefer (1987, chpt. 6). Chromaticity theory and its application
to the color of natural waters is briefly introduced by Bukata et al. (1995, pp. 167).
Definitions of different color spaces are presented by Jähne (2002, pp. 158).
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Figure 3.5. The three kinds of
cones of the human retina show
photosensitivity in different band
of the visible spectrum (Jähne,
2002). Note, that especially the
cones for the green (solid line) and
red band (dashed line) are over-
lapping significantly. Also the ab-
solute values for the peak sensitiv-
ity (used here to normalize cone
sensitivity) are different for the
various cones.

chromaticity coordinates X, Y , and Z. Since chromaticity is understood as a
additive mixture of the three primary colors, only those colors can be displayed
in a color space that are linear combinations of orthogonal base colors.

Following the Commission Internationale de l’Éclairage (CIE) standard col-
orimetric system, the tristimulus values of an irradiance spectrum E (λ) are
given by:

X ′ =

∫
E (λ) x (λ) dλ , (3.15a)

Y ′ =

∫
E (λ) y (λ) dλ , (3.15b)

Z ′ =

∫
E (λ) z (λ) dλ , (3.15c)

where x (λ), y (λ), and z (λ) represent CIE color mixture data for the red, green,
and blue regions of the spectrum, respectively, and thus define a set of primary
colors. These weighting functions reflect the perceptibility of the human eye
with respect to the wavelengths of the visible spectrum.10 Numerical values of

10 The standard luminosity function provides a wavelength dependent conversion factor re-
lating photometric quantities to radiometric quantities, e.g. the luminance L (λ) in lu-

Table 3.3. Approximate vacuum wavelength and frequency ranges for the various colors

color λ0 [nm] f [THz]

red 780 - 622 384 - 482

orange 622 - 597 482 - 503

yellow 597 - 577 503 - 520

green 577 - 492 520 - 610

blue 492 - 455 610 - 659

violet 455 - 390 659 - 769
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x (λ), y (λ), and z (λ) for an equal energy incident spectrum are quoted e.g. in
Bukata et al. (1995, p. 172).

The chromaticity coordinates X, Y , and Z for the red, green, and blue
components are then obtained from:

X = X ′/
(
X ′ + Y ′ + Z ′) , (3.16a)

Y = Y ′/
(
X ′ + Y ′ + Z ′) , (3.16b)

Z = Z ′/
(
X ′ + Y ′ + Z ′) , (3.16c)

where X + Y + Z = 1, and X ′ + Y ′ + Z ′ provides a measure for the luminous
intensity.

Obviously, the photometric description of a visual sensation is given by
a set of 3 parameters. It is defined either by the immediate set of tristimulus
values X ′, Y ′, and Z ′ or by appropriate information in a color space. As can be
seen from (3.16), since the sum of a chromaticity triplet per definitionem equals
unity, two chromaticity coordinates define the chromaticity of a perceived light
beam, a third parameter is needed to describe its luminous intensity.

As illustrated in Figure 3.6 a chromaticity diagram may be employed to
represent the visible radiative spectrum. The color of monochromatic light of
a given wavelength is uniquely represented in the color space by a pair of its
chromaticity coordinates. Figure 3.6 shows the representation of a sequence
of monochromatic light for 380 nm ≤ λ ≤ 740 nm in the color plane of the
X (red) and Y (green) chromaticity coordinates. The chromaticity triplets
associated with the dominant wavelengths of all polychromatic lights fall within
the enveloping monochromatic curve.

For a “white” irradiance spectrum, for which E (λ) is wavelength-invariant,
(3.16) yields X = Y = Z = 0.333. The triplet [1/3; 1/3; 1/3] defines the
white point S or the achromatic color in a chromaticity diagram. A polychro-
matic light will consist of a given irradiance distribution E(λ) in the visible
spectrum peaked at a dominant wavelength11. The dominant wavelength is ob-
tained graphically from the chromaticity diagram, when the connecting line
between the achromatic point S and the chromaticity triplet C of the observed
spectrum is elongated until it intersects the monochromatic perimeter. This is
exemplified in Figure 3.6 by the dashed line for a specific observation.12 The
intersection point L indicates the strongest wavelength in the spectrum. Dif-

men m-2 s-1 to the radiance L (λ) in watt m-2 s-1. For instance, for the maximum sen-
sitivity at λ = 555 nm, 1 watt of radiant flux Φ corresponds to about 680 lumen of
photometric flux. At 410 nm or 710 nm, however, 1 watt corresponds only to 1 lumen.

11 If such a dominant wavelength does not exist, the irradiance spectrum has to be addressed
as “white”.

12 A representation of a dye tracer (Tri-Active Red from Tri-Tex Inc., RGB data reported by
Balu et al. (2001)) solved in water in different dilutions is given as a thin line, where
circles indicate the different mass concentrations. For a mass concentration of 20 g/l the
color hue corresponds to a monochromatic wavelength of about 570 nm.
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Figure 3.6. In a chromaticity diagram corresponding pairs of the chromaticity coordinates
X, Y , and Z illustrate the dependency of color on some independent variable. To give an
example for the XY Z color system, the chromaticity variation with the mass concentration
of a dye tracer (Tri-Active Red from Tri-Tex Inc., RGB data reported by Balu et al.
(2001)) diluted in water is plotted (thin line with circles) in the X −Z plane. The thick line
indicates the visible spectrum of monochromatic colors. The achromatic point S is marked
as +.

ferent spectral distributions of E(λ) peaked at the same dominant wavelength
will all lie on the same line SL. Albeit they obtain the same dominant wave-
length, the distribution along the wavelength is different nevertheless resulting
e.g. in different peak-to-mean ratios. The spectral purity measures the impor-
tance of the dominant wavelength within an irradiance spectrum, a spectral
purity value of 1 indicates monochromaticity, a value of 0 indicates achromatic
light. Graphically, the aspect ratio of the lines SC and SL gives the spectral
purity of an observed spectrum.

From the concept of the additive color mixture only those colors can be
represented in a color space, that are given by linear combinations of 3 pri-
mary colors forming an orthogonal base. With respect to the significant overlap
in the spectral perceptibility of the three photosensitive kinds of cones in the
retina (especially in the green band, cf. Figure 3.5), it is obvious that no com-
bination of 3 physical primary colors can cover the color spectrum. Thus, the
range of colors displayable within a color space based on physical primary
colors is always restricted to a region inside the monochromatic enveloping
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line of a chromaticity diagram. A common primary color system is given by
the monochromatic colors red, blue, and green with wavelengths of 700 nm,
546.1 nm, and 435.8 nm, as recommended by the CIE in 1931. Nowadays, this
RGB colorimetric system is the standard way (by European EBU norm) to
digitally display color images. A RGB image of 24 bit color depth consists of
the tristimulus triplets resolved in 8 bit in each of the 3 color channels for red,
green, and blue.

In order to expand the range of displayable colors a new coordinate system
based upon virtual primary colors, i.e. primary colors not related to any physi-
cal color, may be introduced. A commonly used system is the XYZ color system
which represents the full range of monochromatic colors in the first quadrant,
i.e. with all positive coordinates. It is related to the RGB color system by the
following matrix transform:



X
Y
Z


 =




0.490 0.310 0.200
0.177 0.812 0.011
0.000 0.010 0.990





R
G
B


 (3.17)

The origin of a color system can be transferred into the white point to
generate a color difference system. For digital video the YCbCr color system
is widely used, for which the first channel features the luminance information,
the next two channels contain color difference chromaticity coordinates.

When changing from a Cartesian to a polar coordinate system, the so-called
HSI values are obtained (employed e.g. in the American NTSC norm). The HSI
or HSL color system is given by hue, saturation, and intensity or luminance
values. In the chromaticity diagram the monochromatic color indicated by
point L gives the color hue, and is expressed by the polar angle of line SL.
The saturation of the color hue is represented by the spectral purity, and
graphically by the aspect ratio SC/SL. The intensity or luminance directly
gives the brightness of the irradiance.

Gray-scale images do not contain any chromaticity information, they can
be described solely using the image brightness or luminous intensity. In the
HSI or YCbCr colorimetric system this information is provided explicitly on a
separate channel. Since gray-scale images are achromatic, their RGB or XYZ
values are always identical on the three channels. Instead of using a three-
channel encoding, a single channel containing the intensity is sufficient.

3.2.2 Data acquisition and pre-processing system for PCA

The PCA measurement system is based on an image analysis technique, the
measurement hardware therefore consists of a proper illumination of the field
of observation, an optical system (i.e. a camera), and a storage device. Vital
part of the measurement system is the software that was developed to process
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the raw images and to compute the planar distributions of tracer mass con-
centration. Various pre-processing and processing software modules that have
been developed in order to extract fields of depth–averaged mass concentration
c (x) from PAL videos. In (Rummel et al., 2002) we gave a short overview
of the established PCA system.

Measurement equipment. In order to obtain field-wise information on the
transfer and mixing of a scalar quantity in laboratory turbulent shallow flows,
the Planar Concentration Analysis System has been developed and installed
at the Karlsruhe shallow flow facility. The PCA has been designed to be a very
cost-efficient measurement system, the main objective was to get the necessary
information from an easy-to-use, flexible, and inexpensive technique. The right
side of Table 3.2 on page 38 gives an overview of the employed hardware
components of the PCA system.

As an image of an object is received due to incident light reflected or scat-
tered from the object, an essential component of the PCA system is the il-
lumination. Target of observation is the water body and the bottom. Since
reflections at the water surface would partially obscure the target, all reflec-
tions have to be omitted by a proper choice and adjustment of the illumination.
Floodlights with a total power of 4,000 W emitting an artificial daylight spec-
trum were employed to continuously illuminate the area of about 6 m2. Albeit
it is practically impossible to obtain an exactly constant irradiance of such an
area, the illumination should be as homogeneous as possible. Though not em-
ployed here, the PCA system receives significant improvement by employing
an additional light diffusor, which results in an almost homogeneous light field
(cf. Rummel, 2002, p. 29 and 79). The variation of the incident irradiance has
to be taken into account in the development of an appropriate algorithm for
the image analysis and processing done in the PCA software.

A digital CCD camera, Sicolor C810 manufactured by Siemens, obtained
color images in PAL resolution. This European video standard is characterized
by a frame rate of 25 Hz, a spatial resolution of 768 ∗ 576 pixel, and a 3 ∗ 8 bit
RGB color space. The signal-to-noise ratio of the camera is rather poor and
has to be ascribed to the low-grade CCD chip. The snr ≥ 46 dB results
in fluctuations with a standard deviation of about 2.5 gray units for a 8 bit
intensity resolution independently of the intensity mean. The CCD camera was
equipped with a 10 mm c-mount lens and was positioned vertically above the
bottom of the flume at a height of 3.5 m. Thus, undistorted video images could
be taken in an area of observation of approximately 1.2 m ∗ 1.4 m.

The video stream was stored by a Sony GV-D 900 E digital recorder on
Mini-DV tapes. Using a frame-grabber card and the appropriate software, the
video stream later was separated and converted into individual RGB images
without any loss due to compression.
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Tracer material. In order to simulate the mixing and transport of a scalar
quantity in a turbulent shallow wake flow and observe the associated large-
scale processes, the PCA system—as a non-intrusive, field-wise technique with
strong operational and economic advantages—has been introduced. As an ap-
propriate tracer material we chose Sicovitr Amaranth 85 E 123, a product of
BASF with the INCI (CFTA) nomenclature C.I. 16185, Acid Red 27. This ma-
terial is a widely used and inexpensive colorant for foods, drugs, and cosmetics.
Therefore, the substance is well suited for laboratory use, since its handling
bears no risk for the health of the lab personnel, and it does not mean a source
of pollution for the lab water supply.

The maximum absorption of Amaranth E 123 occurs at 520 nm, its ab-
sorptivity is 440. Resulting from the subtractive color mixture, under white
light illumination it displays a dark red hue. Amaranth E 123 is a very in-
tense colorant with excellent solubility in water (≈ 80 g/l), concentrations in
the order of few mg/l are sufficient for conducting the PCA experiments. For
such low concentrations the tracer material is regarded to be passive to the
flow field, i.e. the flow field does not change due to variation of the fluid den-
sity. Amaranth E 123 provides good stability to pH, light, and heat. Under
experimental conditions the tracer does not undergo any photochemical de-
composition. Therefore, the tracer can be treated as conservative for the flows
considered here. The molecular Schmidt number characterizing the diffusivity
of the tracer mass in solution is of the order Sc = ν/Dm = O

(
103
)
. For more

detail on the physical and chemical properties of this colorant the reader is
referred to BASF (1996, 1997).

Pre-processing. The RGB or true color images were digitized in PAL res-
olution, i.e. the image plane is subdivided into 768 x 576 pixels with a color
depth of 8 bit in the three primary color components for red, green, and blue.
In the field-wise mass concentration measurement program for each individual
run 3.000 images were digitized and had to be analyzed. It is, thus, of essential
importance to identify the necessary information to meet the proposed research
objectives, and to reduce the amount of data as much as possible. Before con-
ducting a PCA analysis, in general three questions have to be answered:

• What is the temporal resolution and the duration necessary to capture the
essential flow features?

• Which spatial resolution and which dimension is needed to depict the crucial
processes?

• What kind of information is needed in the color space?

Spatio-temporal image transformation. Answers to these questions are
always a trade-off between the scientific needs and the available means. As
for this research project, the planar measurements focus on the large-scale
processes in a shallow wake flow. This pre-defines the measurement duration
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and the dimensions of the field of observation. Regarding the measurement res-
olution, we decided not to restrain temporal resolution in the pre-processing,
but to retain the available resolution of 25 Hz for the post-processing, esp.
for the phase–resolved averaging procedures described in Section 10.1.2. The
spatial resolution of the PCA measurements was chosen to be twice as high
as for the PIV measurements. Two basic transformations were, thus, applied
to the images containing the light intensity information. Firstly, the most out-
side lines and rows of pixels were cut off, since they were corrupted during
the gathering and digitizing of the video frames. This image cropping reduced
the area of observation by about 0.5% in each direction. Secondly, in a spatial
averaging procedure—a binning with factor 4.5—the intensity information of
about 20 neighboring grid points were consolidated and condensed to a single
value. Due to binning and additional cropping of the PAL images the amount
of information was reduced by a factor of 20, resulting in a 170 x 128 grid
with a physical spacing of 9.5 mm. Additionally, the binning procedure pro-
vided a simple, but nevertheless effective filter algorithm to significantly reduce
the measurement noise introduced by the CCD chip. Temporal filtering could
not be applied for this purpose, since we wanted to fully retain the available
resolution in the time domain.

Image transformation in color space. Chromaticity, or color, is primarily
utilized to identify different constituents of the water body from their spectral
properties. To evaluate the mass concentration of a given kind of mass we solely
need the light intensity of its dominant color. Since in this examination the
flow contains only a single and known kind of tracer material, the chromaticity
bears not much additional information. It will therefore be discarded for the
benefit of a reduction of data by a factor of 3 by converting the RGB images
into gray-scale images.13

3.2.3 Data processing — transfer relation from light intensity to

concentration

The PCA measuring technique as it has been developed in the framework of
shallow laboratory flows is a non-intrusive methodology to evaluate depth-
averaged mass concentrations by making use of light attenuation due to—
generally nonlinear—absorption and scattering processes related to a tracer
mass in aqueous solution. According to the main purpose of the measuring
technique in the following we will focus on the pre-requisites and on the nu-
merical procedures to convert the obtained light intensity distributions into

13 Balu et al. (2001) also used the chromaticity information from RGB images for the
evaluation of mass concentrations in a shallow wake flow. See the following section for a
short discussion of their approach.
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Figure 3.7. A significant
spatial variation in the radi-
ance field L (x) is observed,
though various measures have
been taken to homogenize
the illumination for the PCA
measurements. Artificial day
light of 4 photo flood lights is
diffused using a special ‘tepee’
diffusor also preventing any
surface reflection. The flow
depth is 25 mm, the water
body is tap water without
additional dye tracer.

fields of mass concentration. Furthermore, we intend to indicate, how the nu-
merical solutions incorporate the underlying hydro-optical physics.

Aspects of illumination. For the sake of simplicity we decided to use a
diffuse illumination with a polychromatic “white” spectrum instead of a more
monochromatic light source. To our experience it is practically impossible—
with a reasonable effort, in the shallow flow facility—to obtain a homogeneous
radiative field with an incident radiative flux that is spatially constant over the
whole area of observation. Both due to inhomogeneous illumination, and due to
the employed optical components, the radiative fluxes impinging on the differ-
ent photo-sensors of the CCD chip vary significantly with position. Moreover,
under the prevailing optically shallow conditions the reflectance of the bottom
has a significant influence on the upwelling irradiance observed by the cam-
era. Imperfections of the bottom, i.e. slight color variations in the coating and
minor variations of the bottom topography, could not be totally eliminated.
The resulting deviations in the luminance distribution of the recorded images
also depend on the value of the luminance itself. Figure 3.7 illustrates this
behavior for an example calibration image (cf. Rummel (2002) for a detailed
analysis). As an obligatory consequence of the unavoidable inhomogeneity of
the luminance field, it is necessary to represent the spatial dependency of the
photometric response in the transfer algorithm when computing the mass con-
centrations from the light intensity data.

Aspects of dye tracer. The food colorant Amaranth E 123, i.e. Acid Red
27, was found to be an appropriate tracer mass for the PCA measurements,
as mentioned above. It provides a good detectability in the visual spectrum
also in very dilute concentrations. Since we decided not to use the chromaticity
information, gray-scale intensities of 8 bit depth provided the raw data for the
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Figure 3.8. The photometric response of aqueous Amaranth E 123 solutions for different
concentrations are shown for three sets of calibration images of the PCA system. (a) For
each calibration set a different water depth is realized. Also the illumination and consequently
the aperture and exposure time of the CCD camera differ between the sets. In terms of the
mean gray-scale luminance I (c) this results in a different response function for each set.
— (b) When normalized by [I (c = 4 mg/l) − I (c)] / [I (c = 4 mg/l) − I (c = 40 mg/l)] the
three response functions show self-similarity. The optical attenuation can, thus, be described
with the same optical model.

concentration measurements. For concentrations spanning more than one order
of magnitude a resolution of 6 to 7 bit could be obtained with the current
instrumentation. Because of the photosensitive linear response of the CCD
chip, the intensity resolution of the exponential attenuation process is also
exponential, ranging from < 0.1 mg/l per unit brightness for concentrations
< 4 mg/l up to > 5 mg/l per unit brightness for concentrations > 40 mg/l.

In Figure 3.8(a) the photometric response of aqueous Amaranth E 123 solu-
tions for different concentrations are shown for three sets of calibration images
of the PCA system. For each calibration set a different water depth is real-
ized. Also the illumination differs between the sets, which in turn necessitated
different apertures and exposure times of the CCD camera. In terms of the
mean gray-scale luminance I (c) this results in a different response function
for each set. When normalized by I(c=4 mg/l)−I(c)

I(c=4 mg/l)−I(c=40 mg/l) , as illustrated in Fig-
ure 3.8(b), the response function shows self-similarity. The same optical effects
are responsible for the attenuation for the different depths and illuminations.
The optical attenuation can, thus, be described with the same optical model.

For concentrations up to 10 mg/l the exponential decay due to attenuation
is essentially constant. For higher concentrations the light attenuation ∂I/∂c
increases since non-linear effects (e.g. multiple scattering, direct molecular ex-
changes) are no longer negligible. The additional attenuation for higher concen-
trations leads to reduced resolution. The relative resolution per unit brightness
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(a) Tri-Active Red (b) Amaranth Red E 123

Figure 3.9. (a) The brightness or luminance of aqueous Tri-Active Red solutions of different
concentrations is displayed both for gray values (full line) and for the RGB color space. The
luminance in the gray space is unambiguously related to the mass concentration. In the RGB
space the consecutive responses of the G, B, and R channel for different concentration ranges
make this dye well suited for a separate analysis of the color channels.
(Tri-Active Red from Tri-Tex Inc., RGB data reported by Balu et al. (2001))
(b) Amaranth Red E 123 shows a simultaneous decrease of the intensity values of the R, G,
and B channel with increasing concentration. Its sensitivity is limited to about two orders
of magnitude instead of three for Tri-Active Red.

is approximately constant with about 2% to 3% for solutions below 10 mg/l,
but decreases rapidly for higher concentrations (e.g. > 10% for c = 50 mg/l).
We therefore restricted all measurements to the low-concentration range (which
also ensured the tracer to be passive to the flow).

The Canadian groups of V.H. Chu at McGill University, Montreal,
and subsequently of R. Balachandar at the University of Saskatchewan,
Saskatoon,—both active in experimental research in the field of shallow wake
flows—also developed a methodology to compute dye concentrations from
video image analysis, which dates back to the work of M.F. Tachie (cf.
Balachandar et al., 1999).

It was Balu et al. (2001), who first used the chromaticity information
of RGB images for the evaluation of mass concentrations. In doing so they
could improve the concentration resolution by a factor of 2 or 3. With respect
to evaluating only the luminance of the R-channel, using the information of
the R-, G-, and B-channel one could expand the range of concentration by
one order of magnitude without loss of resolution. Figure 3.9(a) shows the
photometric response for the individual channels (broken lines) and for the
gray-scale intensity (full line). The selected dye tracer (Tri-Active Red, pro-
duced by Tri-Tex Inc., St-Eustache, Quebeck) allows for taking full advantage
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of the channel splitting in the RGB color space. The three channels G, B, and
R consecutively span a concentration range of 0.01 g/l to 0.04 g/l, 0.04 g/l
to 0.3 g/l, and 0.3 g/l to 20 g/l, respectively, in total three orders of mag-
nitude. Using also the chromaticity information improves the resolution by a
factor of 3 compared to the 8 bit gray-scale intensity information, thus allowing
768 instead of 256 discrete concentration values. Contrarily to the assertions
of Balu, Balachandar, & Wood in order to examine a single-component
solution, firstly it is not possible to use the whole RGB color space resolving
256∗256∗256 values. For different concentrations the variation in chromaticity
(e.g. hue and saturation) follows a distinct line in the color space depending
on the kind of the constituent instead of covering the whole space of possible
chromaticity values. In Figure 3.6 the chromaticity variation of the colorant
Tri-Active Red is indicated by a thin line. Secondly, a possible ambiguity in
the gray-scale intensity—as conjectured by Balu et al. (2001, p.123) 14—
does not necessitate a chromaticity evaluation in concentration analysis, since
in general a single-componential solution will not lead to ambiguous readings.
Also their own data, as plotted in Figure 3.9(a), show a definite relation be-
tween mass concentration and gray-scale luminance.

Ordinary Amaranth Red E 123 that is usually used with our PCA system in
shallow flows reveals sensitivity to concentration over two orders of magnitude.
Furthermore, as is also illustrated in Figure 3.9(b), the analysis of the intensity
in the RGB color space does not improve the resolution compared to a gray
scale analysis. Regarding the average resolutions, Tri-Active Red (3 channels
for 3 decades) allows for a twice as deep analysis compared to Amaranth Red
(1 channel for 2 decades). Unfortunately, the dye sensitivity is not distributed
evenly among the three channels. The R color intensity of Tri-Active Red
spans 2 decades, resulting in the same resolution as for gray scale intensities
of Amaranth Red.

To calculate the mass concentrations from the RGB values, Balu et al.
employed a neural network technique, which consumes much processing time,
and which is therefore not suitable to examine large sequences of images.15 The
advantage of an expanded range of observation, however, becomes questionable
in the case of Balu et al. (2001), since due to the depth-averaged approach
the applicability of the measurement technique is restricted to the mid- and
far-field of the wake flow, where the dynamic range of the physical process
under observation does not really necessitate this additional expansion of the

14 Different values of the color vector [R, G, B]T may lead to the same gray value

(R + G + B) /3. For instance, [200, 200, 200]T and [100, 250, 250]T both correspond to a
gray luminance value of 200.

15 Instead of using a neural network approach a more appropriate conversion strategy would
take advantage of the segmented concentration range subdivided into the 3 color channels,
and employ one of our PCA algorithms presented in the following.
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concentration space. Furthermore, near the upper bound of the concentration
range of 20 g/l one would have to ensure that the tracer would be still passive
to a specific flow.

Calibration procedure. Preceding a set of PCA measurements, a calibration
procedure has to be undergone in order to enable the proper initiation of
the conversion algorithm to be employed. Though the individual calibration
procedure may vary in some detail, some general guidelines can be stated. The
following recommendations should be understood as a maximum requirement,
since they apply to the most basic approach, namely the direct transformation
algorithm. If one employs another algorithm, the procedure can be altered or
reduced carefully. To briefly recapitulate, a calibration procedure before each
set of measurements is necessary, because the experimental conditions change
for each setup. Among these are changes in the illumination (direction and rate
of radiant flux, spectrum of light), changes in optical equipment (lens, camera,
aperture, exposure time), changes in tracer solution (kind of tracer material,
pH of water), and changes in flow field (water depth, topography).

For the PCA measurements conducted in the framework of our research
on shallow wake flows it was almost impossible to reproduce the re-emitted
clear-water irradiance field because of changes in the illumination (photo flood-
lights, and/or neon tubes, and different kinds of light diffusor) and changes in
the bottom reflectance. It has to be pointed out again that the re-emitted ir-
radiance field provided significant spatial inhomogeneity, L = f (x). Though
we did not change the camera equipment, the aperture and exposure time had
to be adjusted to the individual conditions of illumination.16 Moreover, since
the light attenuation depends on the water depth, the aperture and exposure
time had to be properly adjusted for the individual flow conditions to retain a
wide range of brightness levels. For clear-water conditions an image should be
nearly over-exposed, whereas for the highest concentration expected to occur
under the current flow conditions an image should nearly be underexposed.
Within the PCA observations undertaken here the injection rate of tracer so-
lution was adjusted as to restrict local maximum concentrations in the flow
field to 10 mg/l to 15 mg/l. Also the changes in the topography necessitated
to re-calibrate the conversion algorithm for the individual measurement series.
A single cylindrical obstacle of different diameter, or a group of obstacles, was
present or absent during the different measurement series and runs.

For actually obtaining the calibration images for each measurement series, a
compartment containing the whole area of observation was hydraulically sepa-

16 It is crucial for proper calibration of the conversion algorithm to ensure that the automatic
exposure of the camera is disabled. Though an automatic exposure could be compensated
to allow for correct measurement of homogeneous concentration fields, it definitely fails for
the general case of laterally inhomogeneous mass distributions, as they occur in shallow
wake flows.
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rated from the flume, after the water body had reached a constant temperature
and the desired depth of flow, after the illumination had been installed, and af-
ter the camera exposure was set manually. Starting from clear-water conditions
tracer mass was homogeneously distributed within the compartment, for in-
creasing levels of mass concentration sequences of video images were recorded.
The number of frames needed at each level of concentration depends mainly on
the quality of the CCD chip of the camera (cf. Rummel (2002) for more detail
using the Sicolor C810 digital camera). The calibration images were digitized
and pre-processed in the same way as the video images of the actual flow obser-
vations. For each concentration level ci an appropriate set of images was then
ensemble-averaged to obtain an individual photometric response Lcal (ci,x)
depending on the concentration level ci and on the local position x.

Direct transformation algorithm based on interpolation. A simple
and straightforward approach to convert measured luminance values L (x)
into depth-averaged mass concentrations c (x) is based on linear interpola-
tion. Using the above mentioned calibration procedure a luminance matrix
Lcal (ci, x, y) is obtained that contains the spatial brightness distribution for
different discrete levels of concentration. A brightness value L (xi, yi) at a spe-
cific pixel position will then be translated into a concentration value c (xi, yi)
by comparison with the luminance calibration matrix Lcal. Albeit we might
not know anything about the hydro-optical processes that cause the light at-
tenuation, we may still assume that the attenuation in the water column will
continuously change with the concentration of the constituent, i.e. no jumps in
L = f(c). For the most basic transformation algorithm, which does not employ
any hydro-optical model, we therefore utilize a linear field-wise interpolation
algorithm.

In general the accuracy of this transformation algorithm is pre-defined by
the quality of the approximation of the cumulative effect of the attenuation
processes. This approximation depends solely on the concentration of the so-
lution for a specific set of boundary conditions for each experiment, as can be
seen in Figures 3.8(a) and 3.9. The quality of the approximation by a numerical
model to describe the physics of light attenuation will improve, if we increase
the number of concentration levels and optimize their values. Obviously, for
a given quality of approximation the necessary number of the concentration
levels and its values will depend on the transformation algorithm, which will be
applied on the luminance data. A—numerical and/or analytical—attenuation
model, which captures the essential hydro-optical processes, will require less
information for a proper calibration. Furthermore, such a model will allow to
implement more efficient interpolation schemes. In the following section we
present a rudimentary hydro-optical model, which is suitable for the PCA sys-
tem, reduces the effort in calibration, and speeds up calculations.
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Transformation algorithm applying a hydro-optical model. The opti-
cal device of the PCA system, the CCD camera, receives only a small fraction
of the upwelling irradiance Eu, as each photo-sensor of the CCD chip can
be associated with a small solid angle of observation depending on the em-
ployed optical lenses. Therefore, the camera rather receives upwelling radiance
Lu (θ, φ) under a given angle of view [θ, φ], which is related to the total up-
welling irradiance depending on the polar coordinates.

Generally, for the upwelling irradiance, and thus the radiance received by
the camera, as many as four components can be distinguished:

La i.e. the portion of the received radiance resulting from backscattering
of downwelling irradiance in the air, which therefore does not reach the
air-water interface.

Law i.e. the portion of the received radiance resulting from reflection of
downwelling irradiance at the air-water interface, which therefore will not
intrude into the water body.

Lw i.e. the portion of the received radiance resulting from backscattering of
incident irradiance in the water body, which therefore will not reach the
bottom of the water body.

Lwb i.e. the portion of the received radiance resulting from reflection of
downwelling irradiance at the water-bottom interface.

Because the path length of the incident irradiance in air is optically short
in the PCA measurement setup, the portion La is essentially zero here. As
indicated in Figure 3.10 the hydro-optical model, which we will derive for
an improved transformation algorithm, will cover the remaining components
of the received radiance, Law, Lw, and Lwb. For a given measurement setup
(primarily characterized by illumination, and by view angle of observation,
but also by the reflectances of the air-water and water-bottom interfaces, and
by volume reflectance of water column) the received radiance L is regarded
as proportional to the total upwelling irradiance E+

u,0 just above the water
surface, i.e. L = AoptE

+
u,0. The radiance received by the PCA camera can be

described by

L = Law + Lw + Lwb

AoptE
+
u,0 = Aopt (Eaw + Ew + Ewb) . (3.18)

From the total irradiance E+
d,0 impinging on the air-water interface a fraction

Raw will be reflected. The remaining portion (1−Raw) will be refracted while
intruding into the water body. The incident radiation will attenuate within the
water column, a fraction Rw will even be scattered back to the surface. The
remaining portion (1 −Rw) will be partly reflected (factor Rwb) at the water-
bottom interface. All upwelling irradiance will suffer from further absorption
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Figure 3.10. The components of
the upwelling radiance captured
by the PCA camera are illustrated
conceptually. Neglecting backscat-
tering in the air, three principal
components are shown: Law due to
reflectance at the air-water inter-
face, Lw due to volume reflectance,
i.e. backscattering, in the water
body, and Lwb due to reflectance
of the bottom.
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and scattering along its optical path back into the air. These processes are
represented in the following hydro-optical model equation:

Lobs = AoptE
+
u,0 = Aopt

[
E+
d,0Raw

+ E+
d,0 (1 −Raw) e−K h/2 cRw e

−K h/2 c (1 −Rwa) (3.19)

+ E+
d,0 (1 −Raw) (1 −Rw) e−K hcRwb e

−K hc (1 −Rwa)
]

.

On the right hand side of (3.19) term I in the first line denotes the radiance
portion reflected at the air-water interface, term II in the second line denotes
the portion backscattered in the water column, and term III in the third line
denotes that portion reflected at the water bottom. In a shorter notation Equa-
tion (3.19) reads:

Lobs = AoptE
+
d,0

[
Raw + (1 −Raw) (1 −Rwa) e

−K hc

{
Rw + (1 −Rw)Rwb e

−K hc
}]

. (3.20)

Implementation of hydro-optical model in PCA. In optically very shal-
low waters the upwelling irradiance due to backscattering in the water body
is expected to be small, the observed upwelling radiance component Lw might
be negligible compared to Law and Lwb. As for small water depths h and low
concentrations c the volume reflectance Rw → 0, for the transformation algo-
rithm of the PCA we let Rw = 0 in Equation (3.19) and (3.20). This leads
to

Lobs = AoptE
+
d,0

[
Raw + (1 −Raw) (1 −Rwa)Rwb e

−K 2h c
]

. (3.21)

Alternatively, we could include the volume backscattering term II in the surface
reflection term I. Term I would then describe the water surface albedo Asurf ,
i.e. all the irradiance emanating from the surface regardless, whether it might
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result from reflected downwelling irradiance E+
d,0, or from refracted upwelling

irradiance E−
u,0. Formally, in (3.21) Asurf would replace Raw in term I.

The reflectances of the air-water interface, Raw and Rwa, will be dependent
on the surface topography (roughness or waviness) and on the mass concentra-
tion c in the water body. This dependency can be captured in a linear decrease
with c as a first approximation, thus implementing Raw = Raw,0 −maw c and
Rwa = Rwa,0 −mwa c in (3.21). Since the decrease with c is only weak, we will
neglect the quadratic term mawmwa in the bottom reflection term III.

Besides the variables h and c the resulting equation contains 8 unknown
parameters Aopt, E

+
d,0, Raw,0, Rwa,0,maw,mwa, Rwb, and K, which are statisti-

cally correlated in some cases. In order to calibrate the hydro-optical model
we will combine these parameters resulting in a model equation

Iobs (x) = IR (x) +mR c (x) +
(
IA (x) +ma c (x)

)
e−K 2h c(x) . (3.22)

This model equation relates the received luminance Iobs to the mass concen-
tration c in the water body. Since the parameters IR and IA are related to
the incident irradiance E+

d,0 (x), they also depend on the local position. The
parameters mR and mA represent the variation of the surface reflectance with
c, and are themselves not sensitive to the local position, as is the attenuation
coefficient K.

Details on the sensitivity of the model parameters, and on the solution of
the model equation (3.22) implemented in the transformation algorithm of the
PCA can be found in Rummel (2002), as well as recommendations for an
appropriate calibration procedure.

Furthermore, it turned out in PCA measurements on passive plume spread-
ing in shallow shear flow conducted by Rummel (2002) that mA → 0. This
leads to a further simplified model equation

Iobs (x) = IR (x) +mR c (x) + IA (x) e−K 2h c(x) , (3.23)

which could also be derived from the hydro-optical model (3.21). Instead of
the surface reflectance Raw we would use the albedo Asurf (x) of the air-water
interface as a bulk property depending on the mass concentration. For the
interfacial reflectances Raw and Rwa—still occurring in term III to describe the
transmissivity of the interface—we should then assume no significant relation
with c.

Further processing of PCA data. In the data processing of the PCA sys-
tem further software modules are involved that are optional, their application
ranging from ‘nice-to-have’ to ‘strongly-recommended’. An essential feature for
the efficient performance of measurement series in the shallow flow facility is
the possibility to evaluate and subtract a background concentration reading
from individual fields of concentration. The Karlsruhe shallow flow facility is
operated in a closed circuit configuration without an additional storage tank
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resulting in a circulation time in the order of minutes depending on water
depth and flow speed. Instead of changing the water after each measurement
run, which is a time-consuming procedure that as a consequence requires a
new setup and calibration of the PCA system, it is preferable to conduct series
of different measurement runs with the same fluid that is being loaded more
and more with tracer mass from the previous runs. For this purpose a short
sequence of images should be recorded from the flow before the injection of the
tracer dye is started. A time-mean background concentration field cbg (x) can
be calculated and subtracted from the individual concentration fields c (x, t)
of the measurement run. Note that cbg can be regarded a constant only if the
duration of the dye injection, i.e. of the measurement run, is shorter than the
recirculation time of the shallow flow facility.

Furthermore, from the ensemble of images (both of the calibration and
background frames and of the individual frames) statistical information like
the ensemble-rms distribution of the concentration fields can be extracted. A
phase–aligned averaging procedure can be performed in order to allow for a
later synchronization of PCA and PIV data. Temporal or spatial filters can
be employed to improve the quality of the data and of the graphical out-
put. Also an additional binning in the time-domain as well as data processing
with reduced temporal resolution have been implemented in order to reduce
the processing time and the amount of data if necessary. The level of de-
tail in the data output can be adjusted to the requirements of the intended
post-processing. In order to visualize the data and to produce improved video
sequences, the gray scale intensity frames can be enhanced, and false-color
images can be computed from the concentration fields.

Data handling and storage is not a trivial task when processing the PCA
data. Since for each measurement run (with a duration of up to 5 min) 1,500
frames per minute have been recorded and digitized, all the information of a full
run can be stored in computer RAM neither in graphical nor even in numerical
form. Effort has been made to sequentially process and evaluate the images
and concentration data also in their ensemble averaged and phase–resolved
averaged statistics. This also minimizes the computational time for the data
input/output. The sequential structure of the pre-processing and processing of
the PCA data has been organized as to meet the necessities of an optimized
data handling.

3.3 Synchronization of PIV and PCA measurements

In order to access the horizontal mass transport in a flow field the instan-
taneous values of uc and vc have to be determined from synchronous field-
wise measurements of velocity and mass concentration. If standard technolo-
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gies of laser-based PIV and PLIF are available, simultaneous measurements
can be conducted. Instead of a thorough discussion at this point we will give
some references to exemplify the application of combined PIV-PLIF systems
in hydrodynamic research. Firstly, PIV and PLIF have been set up as indi-
vidual systems—each consisting of a stand-alone system with its own camera
and laser light sheet—that were triggered simultaneously by a timing unit.
Fukushima et al. (2000) investigated the mixing process in an axisymmet-
ric turbulent jet employing such a measurement system. A set-up with two
cameras observing the same laser sheet—which still requires the temporal and
spatial coincidence of the two cameras, and thus, a proper synchronization
and adjustment of the cameras—was employed by Meyer et al. (2000) on
a jet in cross-flow, and by Webster et al. (2001) on the far field of a co-
flowing turbulent jet. Cowen et al. (2001) employed a single camera and
two individual laser sheets—a Nd: YAG laser for a PTV system and a scanned
Ar+ laser for the PLIF system—where the PLIF image was taken in between
the two PTV images. They validated this technique by examining a turbulent
round jet in stagnant ambient water.

In the framework of our research in shallow wake flows we employed a sur-
face PIV system to obtain large-scale horizontal surface velocity fields and a
PCA technique to obtain large-scale depth-averaged horizontal distributions
of mass concentration. Both measurement systems were not operated simul-
taneously to observe identical flow fields, because the low-tech equipment of
the PCA did not allow for coupling the two systems via a trigger board like
the programmable timing unit of the PIV system. Nevertheless, coincident
PIV-PCA measurements could be achieved by using a different PCA camera
and data storage device, or by employing the PIV camera also for the PCA
measurements—which will add some difficulty in choosing the appropriate ex-
posure to satisfy the needs both of PIV and PCA. However, the presence of
thousands of PIV tracer particles in the PCA images will involve additional
efforts to the data processing of the PCA (e.g. removal of tracer particles,
possible disturbance due to their diffuse shadows, etc.).

Since in the present project planar measurement systems were employed to
observe the large-scale, slowly-varying, and approximately periodic flow fields
of shallow wakes of VS and UB classes, we chose a different approach that made
use of the special quasi-periodic flow characteristics. A conditional re-sampling
technique was used in the post-processing of the PIV and PCA data. As will
be presented in depth in Part III, Sections 10.1.2 and 11.1.1, we extracted the
large-scale quasi-periodic flow both from the velocity and mass fields apply-
ing a phase–resolved averaging technique to the instantaneous measurements.
Briefly anticipating, from auto-correlations of the time-histories of the instan-
taneous flow fields obtained from PIV or PCA measurements the duration of
each individual flow cycle was determined. The instantaneous data sets were
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then associated to the corresponding phase time, finally all data sets of a
given phase time segment were averaged. The phase–resolved averaged fields
for {u} = uP and {c} = cP could now be cross-correlated. This procedure
enabled us to calculate the large-scale quasi-periodic horizontal mass fluxes
{uP cP } and {vP cP }. A detailed discussion of this procedure will be given in
Part III. An overview about the coupling of PIV and PCA measurements from
their phase–resolved averaged data is presented in v. Carmer et al. (2002),
where also the application to vortex street-like shallow wakes is introduced.
v. Carmer et al. (2003) clarified some restrictions of surface PIV measure-
ments from the analysis of combined PIV-PCA data.
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4. Pointwise Measurement Systems

4.1 Laser Doppler Velocimetry

Compared to other measurement techniques for flow velocities Laser Doppler
Velocimetry (LDV) offers some strong advantages. LDV is a non-intrusive tech-
nique, i.e. the flow in the fluid volume under observation will not be altered
significantly by a probe, no disturbance will be imposed to the flow, only mi-
croscopic particles have to be added to the fluid as tracers. In general, provided
a transparent fluid and an optical access to the measurement volume, a LDV
technique is applicable to liquid and gaseous flows. Moreover, LDV systems al-
low for data acquisition of 3D velocity vectors covering a wide dynamic range
with high temporal and spatial resolution.

Numerous textbooks and introductory texts on laser doppler velocimetry
techniques have been published over the years, comprehensive introductions to
LDV have been provided e.g. by Durst et al. (1981); Ruck (1987, 1990a,b);
Leder (1990); Tropea (1993); Albrecht et al. (2003). Publications de-
scribing LDV applications (for instance in turbulent flows like jets, wakes, or
boundary layer flows) are ubiquitous in the scientific hydrodynamic journals.
Nevertheless, combined single-point measurements of the flow velocity and
a scalar have been reported only scarcely (see e.g. Papanicolaou & List
(1988), and Lemoine et al. (1996, 1997) for combined LDV-LIF systems).

Albeit the detailed hardware components may differ for various commercial
LDV systems, three main groups usually can be distinguished according to
their functionality:

• the light source or source of electro-magnetic radiation (usually provided by
a laser source to meet the necessary intensity, chromaticity, and coherency
of the radiation),

• the transmitting and receiving optics (to manipulate the source radiation as
needed in the measurement volume for the specific LDV technique, and to
manipulate the received optical signal),

• the conversion and analysis of the optical signal (to convert an optical signal
into an electrical signal, to digitize and to analyze the signal).
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Regarding their optical configuration, LDV systems can be subdivided into
dual beam or differential Doppler, reference beam, and two scattered beam in-
terferometer systems with the dual beam technique being the most common
technique used in commercial systems.

4.1.1 Introduction to optical background of LDV

The optical Doppler effect, i.e. the frequency shift of light scattered by a moving
particle, constitutes the basic principle of LDV measurement techniques. A
particle moving in a coherent monochromatic light field of frequency f0 will
experience a frequency-shifted light field. Scattered light emitted by the particle
will again be Doppler shifted when observed by a fixed receiver. Thus, the small
frequency shift (fD − f0) of the received scattered radiation fD represents the
velocity information of the moving particle. Since the velocity |u| of the moving
particle is small with respect to the light speed c for all flow measurement
applications, i.e. β = |u| /c � 1, the relativistic optical Doppler effect can be
treated in a non-relativistic way known as the acoustic Doppler effect (cf. e.g.
Bergmann & Schaefer (1987) or Donges & Noll (1993)).1

The LDV system employed in the framework of this study was set up in
a dual beam technique. For this technique, the coherent monochromatic laser
beam is divided in two partial beams of equal intensity. The two partial beams
are brought to a common focus by a lens. Due to the Gaussian cross-sectional
intensity distribution of the partial beams, the two beams intersecting at a

1 An observer moving in the direction of light propagation will receive a reduced frequency
of the radiation emitted from a fixed source, as will experience a fixed observer with a
light source moving away from him. If a fixed source emits radiation with a frequency f0

and phase velocity c in the direction ei , the frequency recorded by an observer moving at
u will be

f ′ = f0 (1 − uei/c) .

Analogously, if a fixed receiver will detect a radiation of frequency fD from the direction
eD , the frequency emitted by a source moving at u will be

f ′ = fD (1 − ueD/c) .

Hence, if radiation is emitted with f0 from a fixed source, received and re-emitted by a
particle moving with u, the frequency fD detected by a fixed observer will be

fD = f0
1 − uei/c

1 − ueD/c

= f0
1 − β cos αi
1 − β cos αD

.

Since β � 1, by neglecting terms containing β2 the above equation can be linearized to
obtain

fD = f0 (1 − β cos αi + β cos αD) .

More details can be found, for instance, in Durst et al. (1981) or Ruck (1987).
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small angle span an ellipsoidal volume, which constitutes the measurement
volume. A particle, crossing the measurement volume at an arbitrary angle
ψP with respect to the optical axis, will scatter the light of the two incident
beams. Hence, the scattered light observed by the receiving optics consists of
two frequency-shifted signals. Since the two beams are inclined with twice the
intersection half angle φ, both scattered signals display slightly different shifted
frequencies, fD1 and fD2 given by

fD1,2 = f0
1 − β cos (ψP ∓ φ)

1 − β cos (ψP + ψD)
. (4.1)

The frequencies of the emitted laser light and of the detected light are of
the same order of magnitude, fD1,2 = O (f0) = O

(
1015 Hz

)
. It is neither pos-

sible to discretize these frequencies, nor are the frequency modulations due to
the Doppler shift resolvable with any kind of light detector. Following scalar
wave theory the electro-magnetic fields of both reflected beams can be super-
posed to yield a high-frequency wave field modulated by a much lower beat
frequency, as illustrated in Figure 4.1. Contrary to the frequencies fD1,2 of the
individual reflected beams, the beat frequency can be resolved using electro-
optical transmitters.2 Using (4.1) the beat frequency is given by the frequency
difference

∆f = fD2 − fD1 = f0 β
cos (ψP − φ) − cos (ψP + φ)

1 − β cos (ψP + ψD)
. (4.2)

Since β � 1, (4.2) can be linearized using a Taylor series expansion around
β0 = 0 and neglecting terms of order 2 and above (i.e. Mac Laurin polynom of
order 1), hence

∆f ≈ f0 β [cos (ψP − φ) − cos (ψP + φ)]

= f0 β 2 sinψP sinφ . (4.3)

With the wave length λ0 = c/f0 in a fluid, the velocity ratio β is given by
β = |u| / (λ0 f0). Moreover, the velocity component obtained from an LDV
measurement, i.e. the velocity component perpendicular to the optical axis
of the scattering particle, is given by un = |u| sinψP . Thus, (4.3) yields the
defining equation for LDV measurements,

∆f =
2

λ0
un sinφ , (4.4a)

which is equivalent to

un =
λ0

2 sinφ
∆f . (4.4b)

The above equation describes the beat frequency of the two Doppler-shifted
signals from the incident laser beams scattered by a particle passing the
2 In hydrodynamic measurement applications the beat frequency is of order ∆ f =
O
�
105 Hz

�
.
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f + f0 D2

f + f0 D1

f0

f0

2

Figure 4.1. The measuring principle of the LDV technique is sketched for a dual-beam
setup (adapted from Eder et al., 2001). Two coherent laser beams intersect with an half
angle φ, and, thus, span the measurement volume. A particle, advected with the flow, crosses
the measurement volume normally to the optical axis. The incident light scattered by the
particle is frequency-shifted due to the Doppler effect. The Doppler-shifted signals fD1,2 of
both incident beams are not resolvable by any opto-electronic means. The superposition of
both signals results in a modulation with a much lower beat frequency ∆f , which contains
the velocity information and can be accessed and analyzed by electronic devices.

measurement volume. ∆f is often—though not very accurately—called the
“Doppler frequency” of the particle. Equation (4.4) is valid in the limit of
β → 0, then the following characteristic properties of LDV techniques will
apply. The velocity measurement is independent of the orientation of the re-
ceiving optics (forward-scattering, back-scattering, or inclined arrangements).
The particle velocity component un, which is assumed to be an equivalent of
the flow velocity component, is directly proportional to the beat frequency
∆f . The measurements are sensitive to the intersection half angle φ as the
only instrumental parameter to be accounted for.3

3 Nevertheless, one has to make sure about the value of φ in order not to introduce a
systematic error to a LDV measurement. Note, that φ has to be evaluated with respect
to the same medium as λ0, usually both values are given for vacuum or air.
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plane harmonic wave

plane harmonic wave

flow

Figure 4.2. The optical principle of LDV measurements can also be derived by considering
the interference of two coherent plane waves (following Ruck, 1990a). Constructive and
destructive superposition result in a fringe pattern parallel to the optical axis with a spacing
∆x filling the measurement volume. A particle passing through it will reflect light at the
signal frequency ∆f = un/∆x, which corresponds to the beat frequency (4.4).

It should be stressed that the defining equation (4.4) for the velocity mea-
surements does not depend on the fluid in terms of the index of refraction
n, albeit the intersection half angle φ changes with n.4 We will briefly clarify
this point using a simplified optical model based on light interference of the
incident laser beams in the measurement volume, as indicated in Figure 4.2.
The interference of the plane harmonic waves of two coherent beams (wave
length λ) results in a fringe pattern which is directed with the optical axis.
The spacing of the fringes is given by

∆x =
λ

2 sinφ
. (4.5)

Snellius’ law says for the refraction of a light beam at a plane surface that
n1 sinφ1 = n2 sinφ2. From c = λ f , and from the local light speed n1 c1 = n2 c2
the local wave length is n1 λ1 = n2 λ2, since f does not change when entering
a different medium. Substitution into (4.5) shows that the indices of refraction
cancel. The fringe spacing will remain a constant regardless of the fluid, in
which the measurement takes place. Furthermore, as a particle passes the fringe
pattern of the measurement volume with a velocity component un normal to
the optical axis, i.e. normal to the fringes, it will scatter light pulses with a
frequency ∆f = un/∆x. Inserting (4.5) results in the defining equation (4.4a)
once again.

Dynamics of tracer particles. From velocity measurements employing LDV
systems (applies to PIV systems as well) we do not observe the motion of the
fluid flow itself, but the motion of particles (or structures) advected by the
flow. Therefore, the proper choice of tracer particles ideally suited for the given
measurement task and flow configuration is crucial for a high quality of the
experimental examination. Concerning optical flow measurements, particles

4 In an arbitrary fluid (4.4b) becomes un = nflλfl ∆f/ (2nfl sinφfl) using Snellius’ law
n1 sinφ1 = n2 sinφ2 and the local light speed n1λ1f = n2λ2f .
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have to satisfy two general requirements. Firstly, tracer particles should have
a good scattering capability to light in order to ensure their detectibility by
optical devices. Secondly, the tracer particles have to be able to represent the
fluid motion as much as possible (and necessary).

The first preposition requires a significant difference in the refraction indices
of scattering particles and advecting fluid, which corresponds to a density dif-
ference ρP /ρF . Usually, tracers and fluid have a different state, i.e. solid tracers
are transferred by a liquid flow, and solid or liquid tracers by a gaseous flow.
The density difference ρP /ρF is of order O

(
100
)

in liquid flows, and of order
O
(
103
)

in gaseous flows.
The second requirement—the ability of the tracer particle to follow the flow

as close as possible—depends on the minimum wave number to be resolved in
order to obtain the necessary information to answer the questions under consid-
eration. Especially for turbulence measurements, for which the wave number
range has to be resolved down to the smallest scales with high accuracy, a
proper selection and handling of the seeding particles determines the quality
of the results. From kinematic reasons particles have to be sufficiently small,
and from dynamic reasons their mass to be accelerated has to be small. Com-
pared to gaseous flows these restrictions are much less demanding in liquid
flows, since on the one hand the Kolmogorov scale `η is usually much larger
allowing for larger particles with better scattering ability. On the other hand,
in liquid flows the density of the tracer particles can be adjusted to obtain
ρP /ρF → 1.

Under certain assumptions the flow behavior of suspended particles can be
described analytically. For the movement of a spherical particle in a viscous
fluid the following equation of motion has been derived based on the analysis
of an individual particle settling in an infinite stagnant fluid by Basset in
1888.

π

6
d3
P ρp

d uP
dt

= 3π νF ρF dP (uF − uP ) +
π

6
d3
P ρF

d uF
dt

+
π

12
d3
P ρF

d

dt
(uF − uP ) (4.6)

+
3

2
d2
P

√
πνF

∫ t

t0

1

t− T

d

dT
(uF − uP ) dT

The force to accelerate the particle on the left-hand side of (4.6) is balanced
by the terms on the right-hand side. The first term denotes the viscous drag
force due to the relative or slip velocity (uF−uP ) according to Stoke’s law. The
second term represents the pressure gradient force due to local acceleration of
the fluid around the sphere. The third term is the resistance of an inviscid
fluid to acceleration of the sphere following potential flow theory. The last
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term—the ‘Basset history integral’—represents the drag force, which arises
from the previous unsteadiness of the flow and, thus, covers the particle and
fluid dynamics over the memory time T . The following assumptions have been
made to obtain the above balance of forces for a settling spherical particle:

• homogeneous, time invariant turbulence,
• particles smaller than turbulence microscale,
• Stoke’s drag law applies, i.e. spherical shape of particles, and
• relative Reynolds number ≤ 1 (i.e. relative velocity (uF − uP ) is small,
uP /uF → 1),

• low particle density and infinite flow domain, i.e. no interaction of particles
and no change of fluid flow,

• no external forces (e.g. gravity, buoyancy, electromagnetic fields).

Assuming that the temporal derivative of the slip velocity, i.e. the relative
acceleration of the particle d

dt (uF − uP ), is given by d uF
dt − d uP

dt , the Basset-
Boussinesq-Osseen (BBO) Equation can be obtained.

d uP
dt

=
18 νF(

ρP
ρF

+ 1
2

)
d2
P

(uF − uP ) +
3

2
(
ρP
ρF

+ 1
2

) d uF
dt

+
9(

ρP
ρF

+ 1
2

)
dP ρF

√
νF
π

∫ t

t0

1

t− T

(
d uF
dT

− d uP
dT

)
dT (4.7)

A more detailed discussion of the derivation of the BBO Equation (4.7) and
its solution can be found in Durst et al. (1981), in Ruck (1987, 1990a), or
in Albrecht et al. (2003). Moreover, consequences of the particle dynamics
approximated by the BBO Equation with respect to optical flow measurement
systems are introduced in the readings mentioned above—and are also dis-
cussed in literature dealing with field-wise optical measurement techniques (cf.
e.g. Raffel et al. (1998) for PIV applications). For instance, if the magni-
tude of the particle velocity is restricted to deviate by less than 1% on average
from the fluid velocity, depending on the frequency of the velocity fluctuation
a maximum spherical diameter dP can be computed. In a liquid flow with a
density ratio ρP /ρF = 1.5 particles with a diameter of 16 µm are able to rep-
resent turbulent fluctuations of 1 kHz, particles of dP = 5 µm will even follow
10 kHz fluctuations within 1% deviation in velocity amplitudes.

4.1.2 Technical detail of the employed LDV system

In order to obtain the horizontal velocity components of turbulent shallow
wake flows an ‘off-the-shelf’ 2-channel LDV system was employed. This LDV
system was completed by a third channel to meet the needs of a LIF measure-
ment technique, which will be introduced in Section 4.2. Optically, the LDV
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Figure 4.3. General setup of the off-the-
shelf 2-component LDV system (TSI, 1996)

system used a dual-beam differential technique, and a backscatter mode for
the receiving optics.

The configuration of the LDV measuring system is illustrated in Figure 4.3,
a tabular overview is given in Table 4.1. The LDV system comprises a laser
source, a two component beam separator (containing a 40 MHz Bragg-cell),
emitting and receiving optics, a three component receiver (containing the pho-
tomultipliers), a burst signal analyzer, and a PC. Despite of the laser, the

whole system was assembled and provided by TSIr Inc.

As a laser light source a water-cooled gas laser filled with the noble gas
argon to be ionized—a 5 Watt Innova 70/5E provided by Coherentr—was
operated in the continuous-wave mode. Because of a broadband reflector the
laser tube emitted a polychromatic spectrum of light characteristic for argon-
ion. The most energetic lines in the emitted Ar+ spectrum are the green,
blue-green, and blue lines (wave lengths λ = 514.5 nm, 488 nm, and 476 nm,
respectively). Within the multi-color beam separator the two most intense lines
λg = 514.5 nm and λbg = 488 nm—containing about 70% of the energy of the
Ar+ emission spectrum—were extracted from the collimated beam, for each
wave length two partial beams were generated, and one partial beam of each
color was frequency-shifted by a 40 MHz Bragg-cell. Finally, each beam was fed
into an individual optical fiber and, thus, was directed over a distance of 10 m
to the optical probe. The emitting optics focussed each beam, and directed
each pair of beams to intersect at the same point to build the measurement
volume. The employed optical probe (model 9251-102, submersible) had a vac-
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uum focal length of 101.1 mm, and an intersection half angle of approximately
φ = 3.9◦. The ellipsoidal measurement volume had a length of approximately
1.0 mm and a diameter of 70 µm. The light intensity in the measurement vol-
ume was adjusted as to minimize the signal-to-noise ratio, or as needed for the
LIF measurements. The long-term stability of the light intensity is of minor
importance for LDV measurements, it will be addressed in Section 4.3. The
Doppler-shifted light of each of the four beams scattered by a tracer particle
crossing the measurement volume was observed with the receiving optics im-
plemented in the probe. As the receiving optics—with an optical aperture of
0.091—were located exactly at the system’s optical axis between the emission
lenses of the four beams, the LDV was operated in a true backscatter mode.
Together with the modulated wave lengths λg and λbg the full light spectrum
was received and launched to the multi-line fiber.

Via the multi-line fiber the signals were passed to the multi-color receiver.
The wave lengths of the predominant spectral lines λg and λbg, each of which
contained a velocity information in the signal modulation by the beat frequency
∆f , were separated by narrow band-pass filters yielding the signal channels 1
and 2. An additional band-pass filter isolated the fluorescence signal of the LIF
system on a third channel. The optical signals were converted into electrical
signals and amplified by means of photomultiplier tubes.

The voltage signals of the channels 1 and 2 have then been processed by
the burst signal analyzer (Signal Processor IFA 655 Digital Burst Correlator)
with respect to frequency, phase, burst initial time and transit duration. The
evaluation of the signals utilized a patented technique based on auto-correlation
for real-time burst detection and for digital frequency analysis. More detailed
information about the burst signal evaluation technique is provided by TSI
(1996). The obtained data was passed over a DMA interface on to the PC and
was further processed and stored by the analysis and control software package
FIND for windows, versions 1.2 and 1.3. The FIND software also enabled the
user to control the LDV system via a RS 232 interface (e.g. frequency shift of
Bragg-cell, voltage of photomultipliers, range of signal filters, parameters for
BSA).

The optical probe, connected with the emitting and receiving devices by
a 10 m optical fiber, could be positioned at an arbitrary location above the
shallow flow under examination by means of a fully-automated 3D traversing
system. The optical axis was exactly aligned vertically downwards, i.e. per-
pendicular to the bottom and to the stagnant water surface. By vertically
traversing the optical probe with an accuracy of ≤ 20 µm the probe and, thus,
the measurement volume could be placed accurately with respect to the bot-
tom. Moreover, adjustment algorithms implemented in the control software
FLAMES (cf. Dietz et al., 2002) allowed for positioning the measurement
volume at a constant height above the bottom during a measurement run re-



78 4. Pointwise Measurement Systems

Table 4.1. Instrumentation of the point-wise measurement systems for flow velocity (LDV)
and for mass concentration (LIF)

light source

laser argon-ion, continuous-wave

type Innova 70/5E, Coherentr

power output max. 3.5 W in polychromatic beam

LDV system TSIr

beam separator
ColorBurst Multicolor Beam Separator
(model 9201) with 40 MHz Bragg-cell, wave lengths
λg = 514.5 nm, λbg = 488 nm

transmitting and receiving
optics

2D probe (model 9251-102), submersible,
backscatter, focal length 101.1 mm, intersection half
angle φ ≈ 3.9◦, aperture 0.091, length of fiber optic
cable 10 m

measurement volume
ellipsoid, length 1.0 mm, diameter 70 µm, typical
power during operation 150 mW to 200 mW

receiver
ColorLink Plus Multicolor Receiver (model 9230),
2 + 1 channels, photomultipliers for wavelengths
514.5 nm, 488 nm, and 590 nm (LIF)

burst signal analyzer
Signal processor IFA 655 Digital Burst Correlator, 2
components

LIF system add-on for TSIrLDV system

receiver
ColorLink Plus Multicolor Receiver, bandpass-filter
590 ± 5 nm, photomultiplier, 1 kHz low-pass filter

LDV-LIF coupling
DataLink Multichannel Interface DL100 with 12 bit
A/D card

PC for system control,

data storing, and data processing

personal computer, Intel processor P-I 90 MHz, 32 MB RAM, hard disk, Ethernet
card, RS 232 interface, DMA interface card to IFA 655

OS Windows 3.11 and Windows NT

software FIND for windows, versions 1.2 and 1.3

tracer particles

LDV
low-concentrated latex particles (white emulsion
paint)

LIF
Sulpho-Rhodamine, Acid Red 52, C.I. 45100
Rhodamine B, Basic Violet 10, C.I. 45170
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gardless of the horizontal coordinates of the probe. As the probe was placed
above the free surface of the flow, both the incident laser beams and the scat-
tered light signals had to cross the air-water interface. Since the laser beams
were inclined only by the small intersecting half angle φ against the normal
vector n of the surface plane, and the receiving optics were aligned exactly
parallel to n, following geometrical optics the air-water transition could be
handled easily for a smooth plane interface. Although the shallow plane bot-
tom shear flows under consideration were always restrained to Froude numbers
Fr = U/

√
g h ≤ 0.3, and additional measures were taken to minimize surface

waves, small surface distortions remained. The introduction of a cylindrical
obstacle into the base flow to generate lateral shear layers led to further dis-
tortion of the plane water surface. In order to improve the optical access to the
measurement volume, an optical glass disk (diameter 2 in, thickness 0.25 in,
crown glass with refraction index 1.52) was inserted into the optical path at
the water surface.5 The use of the optical disk ensured that fluctuations of the
water surface did not influence the LDV-LIF measurements. Otherwise, a lower
signal-to-noise ratio could reduce the signal quality and, thus, the data rate of
valid bursts. Also, artificial turbulence due to movement of the measurement
volume could be introduced. Furthermore, stronger inclination or curvature of
the air-water interface could lead to a temporal reduction and even loss of the
measurement volume, because the laser beams would not intersect properly.
As a safety precaution the optical glass disk prevented laser light reflected by
the wavy surface to randomly cross the laboratory.

4.2 Laser Induced Fluorescence

Laser Induced Fluorescence (LIF) is another non-intrusive flow measurement
technique, which has been applied in experimental fluid dynamics research for
almost 20 years now. Though its main field of applications is aerodynamics
and combustion technology, LIF techniques are also used in hydrodynamics.
LIF allows for qualitative flow visualization, and for one- or two-dimensional
quantitative observation of mass concentration or temperature with high tem-
poral and spatial resolution (but also LIF-based measurements of pressure or
velocity have been reported in aerodynamics).

LIF has become a common tool in gaseous flow studies both in funda-
mental research and in engineering applications. Andresen (2001) provides
a comprehensive introduction to LIF together with some typical experimental

5 Since the optical glass only touched the water surface, no significant disturbance of the
flow could be observed in the water column below the disk. Because of its limited diameter
and its smooth surface, the thickness of the developing boundary layer was much smaller
than the length of the measurement volume. The LDV-LIF measurements can therefore
still be called ‘non-intrusive’.
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set-ups and applications to examine combustion processes. In the field of ba-
sic hydrodynamic research also a large number of publications can be found,
some papers concerning the measurement techniques will be referred to in
the remainder of this chapter. Single-point LIF techniques have been applied
to various turbulent shear flows. Lemoine et al. (1996) reported synoptic
LDV-LIF measurements in a turbulent jet flow. Crimaldi & Koseff (2001)
compared point-wise LIF measurements with high temporal resolution and
field-wise PLIF measurements in a chemical plume tracing investigation. In
unbounded wake flows Rehab et al. (2001) used LIF to access the concentra-
tion of a tracer mass, and Seuntiëns et al. (2001) utilized the temperature
sensitivity of a fluorophor to observe the thermal transport with a PLIF sys-
tem. v. Carmer & Jirka (2001) reported point-wise co-incident LDV-LIF
measurements to obtain the mass transport in different kinds of shallow tur-
bulent wake flows.

Technical detail also on the equipment of the employed LIF measurement
system has already been presented in Section 4.1, since for the present ap-
plication the LDV and LIF systems mainly feature the same hardware de-
vices. Additional information on how to combine both systems into a synop-
tic LDV-LIF technique will be given in Section 4.3. The present implementa-
tion of a LIF technique to a LDV measurement system was first described by
v. Carmer et al. (2000) regarding hardware, data analysis, and application
to turbulent shallow wake flows. An overview of the LDV-LIF system and the
extended LIF model has been published by v. Carmer (2000).

4.2.1 Introduction to fluorescence

LIF techniques are based on the natural fluorescence of molecules and atoms,
i.e. the ability to absorb quantized electromagnetic energy hf , and to re-emit
part of the absorbed energy at specific frequencies fF in the visible spectrum.
Since the electromagnetic radiation is emitted due to electron transitions from
excited electronic states back to the ground electronic state, the intensity of the
radiation is directly related to the population density in the upper electronic
states, which naturally are only weakly populated. Due to induction by laser
light a considerable number of molecules can be promoted from the densely
populated ground state to an excited electronic state. The subsequent transi-
tion back to the ground state associated with emission of fluorescent light is,
thus, induced or strongly enforced by the laser stimulation. Absolute values
of the mass concentration of a considered molecular species in a measurement
volume can be computed from the intensity of the fluorescence signal.

Quantum-mechanical molecule model. In order to illustrate the light–
matter interactions involved in the inelastic Raman scattering and in fluo-
rescence a simplified quantum-mechanical molecule model can be employed:
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Figure 4.4. The processes of Rayleigh scattering, rotational and vibrational Raman scat-
tering as well as fluorescence can be illustrated employing a simplified quantum-mechanical
molecule model. Concerning the energetic states of molecules, three basic parameters are
used to describe the energy associated with a molecule: the electronic state X, A, B, etc.,
the vibrational level v, and the rotational level J. Ro-vibrational levels of the ground elec-
tronic state X are denoted (v′, J ′), those of the first excited state A are denoted (v′′, J ′′).
(Kruppa et al., 2001)

Bohr’s classical model of electronic shells. Briefly recapitulating the model
concept, the protons and neutrons form the nucleus of an atom, electrons
are encircling the nucleus along orbits—so-called ‘shells’—with certain dis-
tinct radii. The energy of an electron depends on its orbital radius, i.e. on its
distance from the nucleus; the quantization of the total energy of an atom is
represented in Bohr’s model by the assumption, that only discrete orbits or
shells are allowed. In the least energetic state of an atom—the ground elec-
tronic state X—each electron occupies an orbit as close to the nucleus as
possible. An atom can absorb an additional quantum of energy provided e.g.
by collision with other atoms, electrons, or photons by lifting an electron from
an inner shell to a free outer shell. This configuration is called an excited or
upper electronic state denoted by A, B, C, etc. Since the excited states are
inherently unstable, the electron tends to spontaneously relax back to a lower
excited state or preferably to the ground state, thereby emitting an appropriate
amount of energy.
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Molecular inelastic scattering processes. For a molecule consisting of two
or more atoms, besides the electronic state, two additional mechanisms exist
to store energy: vibration and rotation. The atoms in the molecule can vibrate
against their common center of mass; the forces controlling this vibration result
from the bonded electrons of the atoms. Additionally, the molecule may rotate
around its center of mass. Similar to the electronic orbits of atoms, only distinct
levels are possible both for vibration and rotation. The energy difference of
adjacent rotational energy levels J is much lower than the energy difference
of adjacent vibrational levels v, which in turn is significantly lower than the
energy difference between neighboring electronic states. Various vibrational
levels exist for each electronic state of a molecule, and for each vibrational
level different rotational levels may occur. Figure 4.4 illustrates this quantum-
mechanical model. The total energy content Etot of a molecule in the electronic
state e (X, A, B, ...), with the vibrational level v, and with the rotational level
J can be approximated by the sum of the term energy, the vibrational and
rotational energy, Etot = Ee + Ev + EJ .

As illustrated on the left of Figure 4.4, in Rayleigh and Raman scattering
of light an incident photon of the energy hf0 may provide an amount of energy
to the molecule, which is too large to change the rotational or even vibrational
level of the molecule, but which on the other hand is not sufficiently large to
lift the molecule to an excited electronic state. Therefore, the molecule is lifted
to a highly unstable intermediate, virtual state, and immediately—after a time
of O

(
10−15 s to 10−14 s

)
(cf. Guilbault, 1973; Strube, 2001)—drops back

to the ground electronic state emitting an appropriate amount of energy.6 If
the molecule relaxes back again to the same ro-vibrational level of the ground
electronic state, the re-emitted energy quantum equals the absorbed quantum
hf0, i.e. the frequency of the scattered light remains the same as the fre-
quency of the incident light. This inelastic scattering process is called Rayleigh
scattering. If the excited molecule relaxes back to a vibrational or rotational
level of the ground electronic state differing by hfM from the initial level, it
will emit an energy quantum h(f0 ± fM ) deviating from the absorbed quan-
tum hf0, thus emitting radiation of a different wave length c/(f0 ± fM ). This
elastic scattering process is called Raman scattering. The frequency difference
between the incident and the emitted photon corresponds to the difference in
the ro-vibrational levels, and is called Stokes shift fS = ∓fM .7 It should be
stressed again that Raman scattering does not depend on a specific frequency

6 Note that the virtual state is not related to a specific energetic level, i.e. the excitation
does not require a specific energy quantum hf . Thus, photons of arbitrary wave lengths
c/f can participate in Rayleigh and Raman scattering.

7 Note that the Stokes shift is independent of the actual frequency f0 of the incident photon.
The Stokes shift denotes the frequency difference fS = f0− (f0±fM ). It indicates specific
ro-vibrational energetic levels that are characteristic for a molecular species.
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of excitation, therefore light of different wave length can be applied in Raman
spectroscopy.

The radiative process of fluorescence involves a transition back to the
ground electronic state from an excited electronic state—instead of a transition
from a virtual state as for Rayleigh and Raman scattering processes. This is
visualized on the right hand side of Figure 4.4. Depending on the amount of
absorbed quantized energy a molecule is lifted to an appropriate ro-vibrational
level of an excited electronic state. It then will undergo a transition without
visible radiation to a lower—preferably the lowest—ro-vibrational level in the
upper electronic state, followed by a transition involving visible radiation back
to the ground electronic state. Since the absorbed additional energy is reduced
due to the transition to a lower ro-vibrational level, less energy is emitted in the
fluorescent relaxation back to the ground electronic state. Thus, the emitted
fluorescent radiation displays longer wave lengths than the absorbed light, the
emission spectrum is red–shifted to lower frequencies. Due to the additional ro-
vibrational transition the temporal delay of the fluorescence response is much
longer than the response time of Raman scattering (cf. also Table 4.2).8

Most species show the ability to fluoresce, i.e. to emit radiation of char-
acteristic frequencies. Contrary to Raman spectroscopy in spectroscopic flu-
orescence the emission spectrum itself characterizes a molecular species. De-
pending mainly on the temperature, generally only a small fraction of a molec-
ular species is in excited electronic states, since the upper electronic states
are meta-stable, typical lifetimes in the excited states are in the order of
O
(
10−10 s to 10−5 s

)
(cf. Kruppa et al., 2001). Therefore, the natural fluo-

rescence process results in emission of very low intensity. In order to promote a
larger number of molecules into their upper electronic states, additional energy
has to be provided e.g. by high-intensity (laser) illumination. Since the given
molecule, which is initially in a specific level of its ground state X(v′, J ′), has
to be excited to a specific level of an upper electronic state, say A(v′′, J ′′), a
specific quantum of energy hf0 has to be provided. Thus, the stimulating laser
light has to be tuned to a specific frequency f0 in order to excite a desired
transition of a given species. Hence, the absorbtion spectrum with the main
excitation frequencies spectroscopically characterizes a fluorescent substance,
as does the emission spectrum with the main extinction frequencies. Since in

8 Fluorescent radiation is emitted in the immediate transition from an upper electronic
singlet state, i.e. a state with a multiplicity of 1, in which all electrons occur with paired
spins. When the spin of one electron changes so that the spins of two electrons are the
same or unpaired, a triplet electronic state with a multiplicity of 3 is achieved. We speak
of phosphorescence, if the relaxation from the excited electronic singlet state involves a
non-radiative inter-system crossing to an excited triplet state of a lower energy level,
followed by a radiative transition back to the ground electronic state. The additional
internal conversion from a singlet to a triplet state in phosphorescence leads to excitation
lifetimes of O(10−4 s to 101 s). (cf. Guilbault, 1973; Wolfbeis, 1993)
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laser induced fluorescence the excitation of molecules into their upper electronic
states lead to the absorbtion to larger energy quanta compared to Rayleigh and
Raman scattering, also the re-emission of radiative energy is much stronger—5
to 15 orders of magnitude (Kruppa et al., 2001)—in fluorescence.

Table 4.2 summarizes some of the main differences of the inelastic light
scattering processes discussed above.

Once a molecule is in a meta-stable excited electronic state, there are a
number of possibilities to change into a different more stable state. Primarily,
excited molecules will transit back to a ro-vibrational level of the stable ground
electronic state, and will radiatively re-emit part of the additional quantized
energy in the visible spectrum. Basically, the following transitions from an
upper electronic state may occur:

• The molecule may undergo a spontaneous fluorescence transition to the
ground electronic state involving light emission. Depending on which vi-
brational and rotational level of the ground state is reached, the fluorescent
radiation may either be inelastic or elastic. Obviously, atoms may solely
fluoresce elastically. The fluorescence rate is denoted by the first Einstein
coefficient A21, which equals the reciprocal of the mean lifetime in the ap-
propriate excited electronic state.

• The molecule may relax back to the ground electronic state by a laser-
stimulated transition emitting a photon at the laser frequency in the direc-
tion of the laser beam (analogously to Stimulated Raman Scattering). This
process is represented by the second Einstein coefficient B21 directly pro-
portional to A21 and to λ0

3 = (c/f0)
3. The rate of stimulated transitions is

obtained by multiplication with the laser light intensity. Also the excitation
rate of a molecule, i.e. the stimulated transition from the ground state to an
upper electronic state, is expressed by the product of an Einstein coefficient
B12 and the intensity of the incident light.

• The molecule may absorb an additional quantum of incident light and transit
to an even higher energetic state (including eventual ionization). The photo-
ionization rate is usually negligibly small.

Table 4.2. Comparison of inelastic scattering of light by Raman scattering and fluorescence
(data compiled from Mayinger & Feldmann, 2001)

scattering process scatterer excited state excitation
lifetime [s]

frequency
shift ∆ f/f

Raman molecules virtual O
�
10−14

�
O
�
0 ÷ 10−1

�
fluorescence atoms, molecules electronic O

�
10−10 ÷ 10−5

�
O
�
0 ÷ 10−2

�
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• For instance collisions of the molecule with other molecules may result in
a non-radiative transition to a lower electronic state. This effect is referred
to as ‘collisional quenching ’ or ‘concentration quenching ’. The quenching
rate denoted by Q21 usually is unknown for given system conditions (e.g.
temperature, pressure, concentration).

• Collisions with other molecules may also cause vibrational and rotational
transitions within the excited state, and a subsequent fluorescent transition.

• Interactions within the molecule may lead to dissociation; if the dissociation
is caused by a shift from a stable configuration to an unstable electronic
configuration, the process is called ‘predissociation’.

In this work we want to emphasize on the main outcomes of the physico-
chemical processes, as they are of interest for the practical implementation of
a LIF measuring system. For a more thorough summary of the background
of LIF the reader is referred for instance to Guilbault (1973); Andresen
(2001); Deusch et al. (1996).

The fluorescence rate generally depends on the various rates of transitions
and on the intensity of the excitation. Hence, the fluorescent light intensity
and, thus, the signal strength If of a LIF measurement obtained from a fluid
containing a specific fluorescent species is proportional to the absolute number
of species molecules in the measurement volume,—i.e. to their number (or
mass) concentration c—and to the intensity Ie of the exciting laser light,

If ∝ Ie c . (4.8)

Because of its direct proportionality to Ie in (4.8) this standard laser in-
duced fluorescence technique featuring moderate excitation intensities is also
called linear LIF. Apart from c, the signal strength If is also proportional
to the excitation rate B12 Ie and to an approximated Stern–Vollmer factor
A21/(A21 +Q21), which is essentially the fluorescence quantum efficiency Φf .
The a priori unknown quenching rate Q21 requires a detailed and extensive
calibration procedure of the individual set-up in linear LIF.

For a high incident laser intensity, the signal strength If becomes indepen-
dent of Ie, as the population density of molecules in the excited electronic state
reaches its maximum value. This measurement technique is called laser induced
saturated fluorescence LI(S)F. As demonstrated e.g. by Andresen (2001), the
signal strength then becomes proportional solely to A21/(B12 +B21) and to
the species concentration c. Note that in LI(S)F If does not depend on Q21.
Hence, if a high excitation intensity can be realized for a specific measure-
ment technique and set-up, LI(S)F is generally favorable since both calibration
and control and stabilization of incident light intensity would be much easier.
However, in the present set-up of a combined LDV-LIF measurement system a
high light intensity in the measurement volume, firstly, is technically difficult
to achieve and to maintain over the duration of a full measurement run due to
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the sensitive fiber optics and couplers. Secondly, it will lead to a loss of accu-
racy of the LDV measurements resulting in reduced data rates and temporal
resolution. Thirdly, additional attenuation effects due to photo-decomposition
may occur depending on the fluctuating transit times through the measure-
ment volume, which could only be taken into account in a combined LDV-LIF
system providing also the instantaneous flow velocity.

4.2.2 Fluorescent tracer material

Since the ability of molecules to fluoresce is utilized in different scientific fields
and in various measurement techniques, much information can be found about
specific fluorescent compounds. For hydrodynamic applications some useful
readings may be suggested. Fluorophors employed as flow markers in field
examinations were presented for instance by Smart & Laidlaw (1977) for
free-surface flows, and by Käss (1992) for groundwater flows. For more fun-
damental information on fluorescent compounds we recommend for instance
Green (1990) or Slavik (1994).

General considerations. For the different kinds of application of laser in-
duced fluorescence like qualitative flow visualization, or point-wise or field-wise
quantitative measurement of scalar flow properties a selection of few fluorescent
tracer materials are commonly employed, among them most prominently flu-
orescein sodium9 and rhodamine B. Among the basic constraints for a proper
selection of a fluorescent tracer for liquid–flow applications is the solubility
in water; water should be the primary solvent for the fluorophor. Since the
transparency of the water body must not be reduced significantly in order to
apply optical non-intrusive measuring techniques, the concentration of the flu-
orophor should be kept low. Therefore, the absorbtion or extinction coefficient
ε of the tracer material as well as its fluorescent quantum efficiency Φf should
display high values. Though numerous molecular species and compounds show
the ability to fluoresce—and are subjected to fluorescence spectroscopy—, only
few groups of organic substances meet the needs mentioned above, primarily
the group of xanthene dyes.

More specific criteria for the selection of a well-suited fluorescent tracer for
the use in a LIF measuring system can be summarized as follows:

• good solubility in water,
• high specific decadic extinction coefficient ε to allow low concentrations in

order to maintain transparency,

9 Fluorescein sodium—also known as uranin—is the disodium salt of fluorescein (C20H12O5

). In contrast to uranin, fluorescein has a poor solubility and fluorescence in water. Nev-
ertheless, native English-speaking authors often misleadingly use ‘fluorescein’ for its dis-
odium salt ‘uranin’.
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• high fluorescent quantum efficiency Φf to obtain sufficiently strong signals
and high signal–to–noise ratio also for low concentrations of fluorophor,

• absorbtion spectrum should meet the incident laser light or vice versa,
• emission spectrum should meet the detector sensitivity or vice versa,
• large Stokes-shift—difference between maxima in wave length spectra of ab-

sorbtion and emission—to ensure good separability of LIF signal, and to
avoid re-absorbtion of emitted radiation,

• high photo–stability,
• slowly reacting to avoid quenching by other molecular components of water

body,
• low toxicity and secure disposability,
• good availability and price.

Since the LIF system was intended to be coupled to the 2-component LDV
system powered by a cw Ar+ laser, the wave lengths of the exiting laser light
at λbg = 488 nm and λg = 514.5 nm as well as the comparably low intensity
were predefined.

As a first choice fluorescein sodium could have been employed for the cur-
rent LDV-LIF application, because it is well detectable, non-toxic, lowly sorp-
tive, widely available, and inexpensive. The maximum absorbtion wave length
λmax = 491 nm meets the blue-green emission line λbg of an Ar+ laser. Un-
fortunately, the maximum wave length of the emission spectrum of fluorescein
sodium at λmax = 512 nm coincides with the green—and strongest—emission
line λg = 514.5 nm used for the LDV system. Thus, the major part of the fluo-
rescence spectrum would be lost for the LIF concentration measurements, but
would lead to poor signal quality of the first LDV channel. To avoid this prob-
lem the blue Ar+ emission line at λb = 476 nm could have been used for the
LDV instead of λg, the accompanying reduction of light intensity in the mea-
surement volume would have been of relevance only for the LDV system, and
could have been accepted. Since a major drawback of fluorescein sodium is its
reduced photo–stability, instead of changing the LDV wave length we preferred
to select a different fluorophor. For the same reason—poor photo–stability—
another xanthene dye, the eosin, was excluded, albeit its extinction maxima
at λ = 516 nm and 480 nm ideally suit the strongest Ar+ emission lines.
Some species of the family of rhodamine dyes, though generally well suited
for Ar+ laser excitation, also had to be rejected. Rhodamine WT is available
primarily in the US. Rhodamine 6G shows high sorptivity, and is said to be
toxic and cancerogenic. Amidorhodamine G or sulphorhodamine G displays
properties similar to sulphorhodamine B at a 25 nm blue-shift of the absorb-
tion and emission spectra, which would make it a preferable fluorophor for
the Ar+ excitation. However, the commercial-grade dye often can be obtained
only in a reduced purity, which may lead to unexpected quenching effects.
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From the family of the rhodamines the rhodamine B and sulphorhodamine
B are best suited for the designed synoptic LDV-LIF measurement system.
Compared to rhodamine B the sulphorhodamine B is less sorptive, and shows
a higher resistance to photo-bleaching and pH-variation. Table 4.3 summarizes
the main characteristics of the fluorescent dyes employed in the framework of
this research, i.e. sulphorhodamine B and rhodamine B, in comparison to the
widely-used fluorescein sodium.

The time scale of the fluorescence processes can be characterized by the
mean excitation lifetime, i.e. the average time between absorbtion and elastic
re-emission of a light quantum, and is of order O(10−9 s) for most organic
molecules. For instance, Guilbault (1973) reported a fluorescence lifetime of
5.8 ns for rhodamine 6G in water.

Table 4.3. The organic molecular tracer materials employed for combined LDV-LIF mea-
surement in the framework of shallow turbulent wake flows are rhodamine B and sulpho
rhodamine B solved in tap water. Its characteristic values as relevant here are compared to
fluorescein sodium, which is often employed in LIF applications. [data: Green (1990); Käss
(1992) unless indicated otherwise]

rhodamine B sulpho-
rhodamine B

fluorescein
sodium

C.I. constitution no. 45 170 45 100 45 350

C.I. generic name basic violet 10 acid red 52 acid yellow 73

producer & product name Merck, Merck
index no. 7599

Hoechst, “Duasyn
Säurerhodamin
B 01”

chemical structure C28H31N2O3Cl C27H29O7N2S2Na C20H10O5Na2

molar mass [g/M ] 479.02 580.65 376.28

λmax of extinction spectrum
[nm]

554
520; 355; 300

564
525; 342

491
322

λmax of emission spectrum
[nm]

576 583 512

specific decadic extinction
coefficient ε at λmax
[(mkg/m3)−1]

22,700 15,500 20,000

molar decadic extinction
coefficient εM at λmax
[(mM/m3)−1]

10,800 8,990 6,813

molecular diffusivity D [m2/s] n. a. (8 · 10−10 for rhod. 6G
(Crimaldi & Koseff, 2001))

5.2 · 10−10
(Walker,

1987)

molecular Schmidt no.
Sc = ν/D [−]

n. a. (1,250 for rhod. 6G) 1,930

fluorescence quantum
efficiency Φf [−]

0.60 (Deusch et al.,

1996)

n. a. 0.92 (Deusch et al.,

1996)
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Figure 4.5. Sulphorhodamine B solutions in tap water of the mass concentrations c =
50, 100, 200 µg/l were analyzed using fluorescence spectroscopy. Light gray symbols indicate
excitation with wave length λg = 514.5 nm, black symbols indicate excitation with λbg =
488 nm. The light intensity has been kept constant for all emission spectra.

Sulphorhodamine B. The first of two different dye tracers that we employed
for the non-intrusive point-wise combined measurements of velocity and mass
by means of a synoptic LDV-LIF system was sulphorhodamine B (C.I. 45100,
acid red 52) provided by Hoechst under the product name “Duasyn Säurerho-
damin B 01”. Using water as a solvent its wave length spectrum of extinction
(or absorption or excitation) peaks around λmax = 564 nm, with secondary
maxima at 525 nm and 342 nm. The molar decadic extinction coefficient for
λmax is εM = 89, 900 (cm M/l)-1. The emission spectrum of the fluorescent ra-
diation shows a maximum at a wave length of 583 nm, and hence a significant
Stokes-shift of 19 nm.

The laser light in the measurement volume exciting the fluorescent dye was
composed of four beams of the two distinct wave lengths 488 nm and 514.5 nm,
adjusted as to obtain equal light intensity for both pairs of beams. Figure 4.5
shows the emission spectra of sulphorhodamine B solutions of different con-
centrations in tap water, as they were obtained from fluorescence spectroscopy
using an equal intensity excitation with λbg = 488 nm or λg = 514.5 nm sepa-
rately. Obviously, the absorbtion or extinction coefficient, ε(λ), is much higher
for the green light than for the blue-green light resulting in significantly more
energetic emission spectra for excitation with λg = 514.5 nm.

The polychromatic light scattered by LDV tracer particles and by the LIF
dye tracer was divided by beam splitters in the ColorLink multi-color re-
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ceiver into three partial beams. Each partial beam was subjected to a narrow
optical band-pass filter, then transformed and amplified by a photo-multiplier.
Figure 4.6 (a) shows the extinction spectrum of sulphorhodamine B as well as
the emission spectrum when excited at λ = 514.5 nm, i.e. at the wave length
λg of green LDV beams. Additionally, the characteristic line of the optical
band-pass filter λ = 590 ± 5 nm indicates, which portion of the fluorescence
signal was separated from the emission spectrum to be processed and analyzed
by the LIF measurement technique.

Rhodamine B. As a second xanthene dye tracer rhodamine B (C.I. 45170,
basic violet 10) was employed for the synoptic LDV-LIF measurement tech-
nique adapted for measurements in shallow turbulent wake flows. The tracer
material was produced by Merck under the product number 7599. The ab-
sorption spectrum reaches its maximum at a wave length λmax = 554 nm with
secondary maxima at 520 nm, 355 nm, and 300 nm. The molar decadic extinc-
tion coefficient at λmax approximately equals εM = 108, 000 (cm M/l)-1. The
fluorescence emission spectrum peaks at 576 nm revealing a high Stokes-shift
of 22 nm and a fluorescence quantum efficiency of about 0.60.

A solution of 500 µg/l rhodamine B in tap water as analyzed by fluorescence
spectroscopy reveals the absorption spectrum shown in Figure 4.6 (b). The
emission spectrum obtained from an excitation with a wave length of 514.5 nm
is displayed together with the characteristic line of the optical band-pass filter
employed to isolate the fluorescence signal for the LIF analyzes.

From the absorbtion spectra in Figure 4.6 we can see that—compared to
the reference values listed in Table 4.3—the wave length of maximum excita-
tion is red-shifted significantly for both dye compounds. For sulphorhodamine
B the absorption peaks at λmax = 572 nm instead of 564 nm as reported in
literature, for rhodamine B we obtained λmax = 561 nm instead of 554 nm.
Hence, the specific extinction coefficients ε(λg) at the Ar+ wave lengths were
even lower than expected, i.e. the excitation was even less effective, but this
could be accounted for by using a sufficiently high incident laser intensity.
However, the maxima in the emission spectra for an excitation at λg occur
with only a marginal red-shift (584 nm instead of 583 nm for sulphorhodamine
B, and 577 nm instead of 576 nm for rhodamine B). The red-shift mainly of
the absorption spectra results in a reduction of the Stokes shift from 19 nm to
12 nm for sulphorhodamine B, and from 22 nm to 16 nm for rhodamine B. A
reduced Stokes shift means a higher rate of re-absorbtion of the emitted fluo-
rescent radiation. For the present LDV-LIF measurement set-up the emitted
fluorescent light could suffer from additional attenuation, when scattered out
of the receiving beam path. This attenuating effect could be addressed by a
modified absorbtion coefficient ε̃, as will be discussed in the following section.
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(a) Fluorescence spectra of sulphorhodamine B

(b) Fluorescence spectra of rhodamine B

Figure 4.6. For the xanthene dyes sulphorhodamine B and rhodamine B—employed as flu-
orescent tracers for the combined LDV-LIF measurements—extinction spectra were recorded
from 0.5 mg/l solutions in unbuffered tap water (dark full lines). For the emission spectra
(light full lines) the excitation was tuned to the wave length λg = 514.5 nm of the strongest
Ar+ line, which obviously did not meet the wave length of maximum extinction very well.
The characteristic line of the optical band-pass filter (dashed line) indicates, which part of
the emitted fluorescence signal had been amplified by the photomultiplier tube.
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When directly comparing the non-normalized spectra of the two selected
fluorescent dye tracers (cf. v. Carmer et al., 2000, Figure 3.8), our own
fluoro-spectroscopic measurements showed—for a 500 µg/l solution in tap
water—that for the specific decadic extinction coefficients the proportional-
ity ε (λmax = 564nm)SRhB ' 0.58 ε (λmax = 554nm)RhB holds, whereas Käss
(1992) reported a ratio of 0.68. When excited at the primary Ar+ wave length
λg = 514.5 nm, the specific absorbance of sulphorhodamine B only reached a
value of 39% of rhodamine B, since the absorbtion wave lengths of sulphorho-
damine B are generally longer—it actually displays the farthermost red absorb-
tion spectrum of all rhodamines. As the cw Ar+ laser was able to provide up to
approximately 2.1 W in the strongest emission lines λg and λbg, the rather low
efficiency in the excitation of sulphorhodamine B could be easily compensated
for by tuning up the incident laser radiation, if only the signal–to–noise ratio
was kept at a sufficiently high level.

4.2.3 Analytical model for fluorescence intensity

Basic equation. The intensity of an incident light beam, exciting the fluores-
cent dye compound in the measurement volume, will attenuate along its beam
path due to scattering and absorbtion by various reasons. When traversing an
optically dense volume of thickness ds, the incident beam intensity is atten-
uated by dIe (cf. also Section 3.2 for a general discussion). In a very dilute
aqueous solution of fluorescent tracer mass, light is attenuated primarily by
absorbtion. The decrease of the light intensity over an infinitesimal short path
of length ds can be described by a homogeneous linear first-order differential
equation, offering a solution similar to the Lambert-Beer law,

dIe (s) = −k (s) c (s) Ie (s) ds , (4.9)

where k a logarithmic coefficient of absorbtion,
c (s) the mass concentration of the fluorophor at location s, and
Ie (s) the intensity of exciting laser light at location s.

The light intensity Ie at a location s of an incident laser beam that attenuates
while passing through a fluid along an optical path of length b is obtained from
(4.9) as

Ie (s) = I0 e
−
R s
s−b k(ŝ) c(ŝ) dŝ (4.10a)

⇔ Ie (s) = I0 10−
R s
s−b ε(ŝ) c(ŝ) dŝ , (4.10b)

where I0 = Ie (s = 0) the initial intensity of the incident laser light beam, and
with ε the decadic extinction coefficient, given by k = ln (10ε) = ε ln (10).

As for most LIF applications also for the present case of a monochromatic
light source the absorbtion coefficient is considered to be independent of the



4.2 Laser Induced Fluorescence 93

length of the beam path in the water body, i.e. solely depending on the wave
lengths of the incident light predefined by the laser source of the LDV system.
Therefore, k (s) = k, and ε (s) = ε.

As mentioned in Section 4.2.1 the irradiance of the fluorescent light, emit-
ted isotropically by the fluorescent compound at a location s, is found to be
proportional to the intensity of the exciting light Ie (s), and to the fluorophor
concentration c (s) at this location (cf. also Equation (4.8)). The fluorescent
light intensity If , which is emitted in the direction of the receiving optics, can
be described by

If (s) = Aopt Φf Ie (s) k `mv c (s) . (4.11)

Only a small fraction of the total fluorescent irradiance can be observed by
the receiving optics covering a small solid angle Ω. For the collecting optics
of the LDV-LIF system focussed on the measurement volume, the aperture

ratio Aopt = Ω
4π is approximated by Aopt =

πr2l
4πl2f

, where rl is the radius of the

limiting aperture of the collecting lens, and lf is the focal length of the lens,
i.e. the distance to the measurement volume. The product k `mv c (s) Ie (s) is
the total energy absorbed by the fluorescent mass of concentration c along the
optical path under observation, i.e. along the measurement volume of a short
length `mv.10

The quantum efficiency Φf represents the ratio of energy emitted as fluo-
rescent radiation to the total absorbed energy. The total energy required to lift
molecules from a ground electronic state to an upper excited electronic state
will be re-emitted to a bigger part as visible radiation and to a lesser part in
competing non-radiative transitions, in so-called quenching processes. Φf can
be described by a kind of Stern–Vollmer factor A21

A21+Q21
using the fluorescence

rate A21 and a bulk quenching rate Q21. As Q21 heavily depends on the spe-
cific conditions of the fluorescence process, the quantum efficiency for a given
experimental setup is a priori unknown and far from being constant. In the
following section we will identify the most important variables influencing Φf
under the present LDV-LIF working conditions, and we will derive a model
function to represent the variability of Φf , in order to finally infer the mass
concentration c of the fluorophor from the received fluorescent light intensity
If .

Equation (4.11) would also describe the intensity of fluorescent light col-
lected by the receiving optics, if light attenuation along the receiving path
would be negligible. For the given measurement system and setup, attenuating

10 More common single–beam LIF systems in off-axis arrangement use optics with infinite
focal depth and a very narrow field of observation of width `mv. In contrast, the present
on-axis backscatter arrangement—emitting and receiving optics are aligned with the same
optical axis—needs a very low depth–of–field focussed exactly on the LDV measurement
volume to ensure a short path length `mv also for the LIF measurements.
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effects due to various optical components (lenses, filters, optical fiber) will be
included in a bulk optical efficiency ηopt. On the other hand, scattering and
absorbtion of the re-emitted fluorescent light in the water body are usually ne-
glected. As argued for instance by Walker (1987, p. 218), “at λf [wave length
spectrum of fluorescence] the extinction coefficient is much smaller than at λa
[absorbtion wave length], so attenuation can be neglected along the receiving
path.” However, Figure 4.6 demonstrates that the extinction and emission spec-
tra both of Rhodamine B and Sulphorhodamine B greatly overlap. Therefore,
the re-absorbtion of fluorescent light especially of shorter wave lengths along
the receiving path should not be excluded in general. If a low-pass filter—
transmitting only the low-frequent red part of the emission spectrum that is
not affected by re-absorbtion—would be employed, shorter wave lengths sus-
ceptible to attenuation due to re-absorbtion could be blocked. Unfortunately,
the light intensity and, thus, the signal strength would also be reduced signif-
icantly. The narrow band-pass filter centered on the red side of the spectrum
close to the maximum emission wave length, as was employed for the present
LIF system, can be regarded a trade-off between omitting an attenuation effect
and keeping sufficient signal strength and quality. If one is not willing to follow
the above arguments, the attenuation of fluorescent light along the receiving
path can also be represented—analogously to (4.10)—by an exponential factor

e−ke
R b
0 c(s) ds. We will address this issue again in the next section in the context

of the calibration of the LIF model equation.11

Light attenuation along the beam paths of the incident laser beams has to be
taken into account according to (4.10a). Thus, the intensity of the fluorescent
light emitted into the direction of the receiving optics can be directly related
to the initial intensity I0 of the exciting laser beams. Equation (4.11) thus
becomes

If (s) = Aopt I0 Φf k `mv c (s) e−k
R s
s−b c(ŝ) dŝ . (4.12)

If the concentration of the fluorescent compound can be regarded constant
along the optical path within the water body, i.e. c (s) = c, then the intensity Ie
of the exciting laser beams in the measurement volume according to (4.10a),
and the intensity If of the fluorescent radiation toward the receiving optics
according to (4.12) will become, respectively,

11 Note that the attenuation of the fluorescent light due to re-absorbtion, as discussed in
the above paragraph, also involves the issue of secondary excitation not by the incident
laser beams, but by the emitted fluorescent light. It is often argued that the density of the
fluorophor molecules is low enough to neglect this effect. Otherwise, secondary excitation
within or close to the measurement volume would introduce additional non-linearity to the
LIF model equation. Since the fluorescent light is emitted in spherical waves, its intensity,
i.e. the power per unit area, follows an inverse square law. The intensity of the fluorescent
light emitted from the measurement volume will decrease with r−2, thus, re-excitation
along the receiving path might well be neglected.
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Ie (s) = I0 e
−k b(s) c , (4.13a)

If (s) = Aopt I0 Φf k `mv c e
−k b(s) c . (4.13b)

Note that in general the attenuation length b of the optical path within the
water body will vary with the position s of the measurement volume, i.e. b =
b (s).

The supposition of a constant value of the concentration along the optical
beam path is certainly justified, if the LIF measurements will be restricted to
shallow flows and to flow parameters of appropriate length and time scales.
In the framework of shallow wake flows considered in this study, for which
the water depth h is significantly smaller than the large horizontal scales of
the flow, for the attenuation length we always have b < h, since the on–axis
backscatter LIF system is aligned vertically from above the water surface.

If the concentration of the attenuating compound in the optical path is low,
i.e. if the constant value c or the spatially averaged value c̄ tends toward zero,
then the attenuation due to absorbtion becomes negligibly small, i.e.

lim
c→0

e−k b(s) c = 1 . (4.14)

Note that obviously in this situation also spatial variations in c along the op-
tical path will be of vanishing influence to the attenuation of incident light.
Therefore, it is not necessary to postulate a homogeneous concentration, if
concentrations are sufficiently low. In order to compute the intensities of the
exciting and fluorescent radiation, Equations (4.13) (or (4.10a) and (4.12) di-
rectly) can be further simplified, i.e.

lim
c→0

Ie (s) = I0 , (4.15a)

lim
c→0

If (s) = Aopt I0 Φf k `mv c . (4.15b)

Equations (4.15) describe the linear correlation between the intensity of the
emitted fluorescent radiation and the fluorophor concentration, and form the
basis of linear LIF techniques, which are applicable in the limit of small c only.
As an upper bound of c for the applicability of linear LIF most experimentalists
adhere to a recommendation of Guilbault (1973). In order to ensure the
linearity of (4.15), less than 5% of the incident light should be absorbed by the
fluorescent compound along the optical beam path of length b in the fluid, i.e.

Ie (s)

I0
=
I0 e

−k
R s
s−b c(ŝ)dŝ

I0
≤ 0.95 .

Thus, the tolerable spatial-mean concentration of the fluorophor along the
optical path should not exceed

c̄max =
ln 0.95

−k b (4.16)
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in order to evaluate LIF data employing a linear model equation of the form
(4.15).

Walker (1987) suggested for a fluorescein disodium solution to keep the
concentration below 10-7 M/l to avoid significant beam attenuation along a
10 mm beam path, which corresponds to a more stringent value of 1.6% for
the tolerable incident light attenuation. Finally, the accuracy in an experimen-
tal investigation necessary to answer the question under consideration, will
predefine the level of precision of the applied LIF model equation.

In conclusion, for the experimental examination of shallow wake flows we
employed an LDV-LIF measurement system in order to obtain correlated ve-
locity and mass concentration data with high temporal and spatial resolution.
The non-intrusive optical access with an on-axis backscatter probe aligned
vertically from above the surface ensured a short attenuation length b. As the
time–mean vertical gradient of the concentration distribution ∂ 〈c〉 /∂z was
small in the free–surface layer of the shallow wake shear flow, the fluorophor
concentration was assumed to be distributed homogeneously in the vertical
direction along the optical beam path. This allowed for the implementation of
a LIF model equation of the form (4.13).

If vertical homogeneity of c would turn out to be a too restrictive assump-
tion for some kinds of flows, then an improved model equation could be im-
plemented. Equation (4.13a) can be improved for a known mass distribution
c (s) along the optical path. Then, instead of c we can use a spatially averaged
value

c̄ =
1

b

∫ s

s−b
c (ŝ) dŝ .

The averaged concentration c̄ can be related to the local concentration in the
measurement volume by c̄ ∝ c (s). For a known spatial distribution a constant
of proportionality αc (s) can easily be calculated depending on the vertical
position of the measurement volume. The intensity of fluorescent light emitted
toward the receiving optics then would become

If (s) = Aopt I0 Φf k `mv c (s) e−k b(s) αc(s) c̄ , (4.17)

which would be a model equation closely related to (4.13b).

4.2.4 Modelling various attenuation effects of a LIF signal

The signal strength of the fluorescent radiation, as received by the LDV-LIF
measurement system, will be influenced by a multitude of effects, which in gen-
eral reduce the signal quantitatively, but in some cases also qualitatively. The
signal analysis with respect to the concentration of a fluorophor will have to
represent these effects and processes, as needed and applicable. The influences
on the fluorescence signal can be subdivided grossly into four categories:
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• Attenuation of the exciting and emitted light
due to scattering and absorbtion along the optical path (e.g. transmissivity
of optical components, absorbtion by fluorescent compound in water body,
scattering by particulate matter suspended in water body),

• Variability of the quantum efficiency
of the fluorescent compound (for a given fluorophor Φf in general depends
on e.g. temperature, pH-value, and wave length of excitation),

• Quenching effects
of the fluorescence process (e.g. collisional/concentration quenching, oxygen
quenching, impurity quenching),

• Further aspects
of laser induced fluorescence (e.g. photo–decomposition of the fluorophor,
saturation of fluorescence process in linear LIF application, optical arrange-
ment, and definition of measurement volume).

Possible aspects of the four categories, as exemplified above, have to be con-
sidered carefully for their influence on the application of a specific LIF mea-
surement technique in a given experimental set-up. If applicable, they have to
be included in a model equation, e.g. in (4.13), in order to compute the mass
concentration of a fluorescent tracer from the fluorescence signal data obtained
from the LIF measurement system.

Attenuation of incident and emitted light. Both the incident laser light
beams and the emitted fluorescent light are subjected to various light atten-
uation processes, which—regarding their spatial extent—can be divided into
local and continuous effects. Local attenuation occurs if a sudden change in the
optical properties of the transmitting medium is encountered by the propagat-
ing light. Primarily, the classical transition processes of reflection, refraction,
and diffraction at optical boundaries will result in attenuation of a passing
light wave. But also attenuation occurring along a short beam path in an op-
tically dense medium may be spatially concentrated or ‘localized’, for instance
to the center of an optical lens. Individual local attenuation processes can be
quantified using a transmissivity ηopt,i, the transmissivity values of different
local attenuation effects can be combined by multiplication to obtain a bulk
local attenuation value ηopt =

∏
i ηopt,i.

In contrast, spatially continuous attenuation denotes scattering and absorb-
tion processes that occur if light propagates steadily within a transmitting
medium, for instance sun light attenuating while travelling downward in the
water column of a lake or ocean. We addressed this kind of attenuation from
the oceanographic or limnological point-of-view in Chapter 3. As mentioned
in Section 4.2.3 continuous attenuation processes show an exponential decay
which can be described using a model equation corresponding to (4.10). We
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can also use a discretized model for the description of spatially continuous
attenuation processes along the optical path as

e−k
R s
s−b c(ŝ) dŝ =

∏

i

(
e
−ki

R s
s−bi

ci(ŝ) dŝ
)

in order to represent varying boundary conditions along the optical path.
For the present LIF measurement setup attenuation due to absorbtion will

reduce the intensity of the incident laser beams as well as the intensity of
the emitted fluorescent radiation, and should not be neglected. Assuming a
homogeneous concentration of the fluorophor along the optical path, and with
the path length of the incident and emitted light having the same length bi ≈
be = b (because of a small beam-crossing half-angle φ), the effect of continuous
absorbtion can be expressed as

eki b c eke b c = e(ki+ke) b c . (4.18)

Spatially continuous attenuation may also occur due to scattering of light
by particulate matter. For the present measurement setup of a combined LDV-
LIF system it is crucial for the velocity measurements that scattering tracer
particles are advected through the measurement volume at an adequate rate.
Since these LDV scattering particles have to be added homogeneously to the
flow, they may lead to continuous attenuation all along the optical path in the
liquid medium. Additional attenuation due to scattering may arise from the
contamination due to organic or inorganic suspended material. Analogously to
absorbtion, the attenuating effect of spatially continuous scattering due to var-
ious scattering materials along the optical path can be captured in exponential
terms. For the present boundary conditions of experimental setup and measure-
ment equipment the scattering by LDV seeding dominated further scattering
effects due to contamination of the water body. The attenuating influence of the
LDV seeding on the LIF signal—both on the incident laser light and the emit-
ted fluorescence radiation—could have been represented by e(ksct,i+ksct,e)b csct

similar to (4.18). However, as the concentration of the LDV tracer particles was
kept low in order to maintain a good signal quality for the LDV measurements,
the light attenuation due to scattering turned out to be negligible compared
to the attenuation due to absorbtion by the LIF tracer material.

Variability of quantum efficiency. In order to describe the ability of a
molecule to fluoresce, as a characteristic value the quantum yield, or quan-
tum efficiency, Φf is commonly used. Following a general definition given by
Guilbault (1973), the fluorescence quantum efficiency

“is the ratio of the total energy emitted per quantum of energy ab-
sorbed:

Φf =
number of quanta emitted
number of quanta absorbed

= quantum yield
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The higher the value of Φf , the greater the fluorescence of a compound.
A non-fluorescent molecule is one whose quantum efficiency is zero [...]
All energy absorbed by such a molecule is rapidly lost by collisional
deactivation.”

Guilbault (1973, p. 11-12)

The fluorescence quantum efficiency denotes which percentage of the energy
absorbed by a molecule (at a given concentration of solution, temperature,
and pressure) will be re-emitted in visible radiation instead of competing
non-radiative deactivating processes. Here, non-radiative transitions include
all changes in the ro-vibrational electronic states of activated molecules, and
various kinds of ‘quenching’ processes. Φf can be described by a Stern–Vollmer
factor comparing the spontaneous fluorescence rate and the bulk quenching
rate, as mentioned in Section 4.2.1.

Because of the chemical nature of the processes involved in fluorescence,
its quantum efficiency depends on the conditions of state of the fluorophor so-
lution, i.e. on temperature, pressure, and concentration, which pre-define the
level of activity of the molecules. Since changes of the pressure will lead to
variations in Φf mainly in gaseous flows, we are allowed to neglect this effect
for liquid solutions—especially in shallow free-surface flows. Contrarily, tem-
perature changes affect the quantum efficiency also in liquid flows, as stressed
by various authors (cf. e.g. Guilbault (1973); Smart & Laidlaw (1977);
Walker (1987); Coppeta & Rogers (1998)). The temperature sensitivity
Φf (T ) of some fluorescent compounds allowed for the development of LIF-
based measurement techniques for the temperature in flows. Lemoine et al.
(1999) realized a point-wise LDV-LIF system for coincident measurements
of temperature and velocity, which they applied to a turbulent jet in co-
flow. Planar LIF systems for temperature measurements were implemented
by Seuntiëns et al. (2001) for the investigation of a vortex street in a cylin-
der wake flow, and by Sakakibara & Adrian (1999) for thermal convection
over a heated plate. Both techniques were using slightly different model equa-
tions to represent the temperature dependence of fluorescence for their data
evaluation algorithms.

The concentration of the fluorescent compound also influences the quan-
tum efficiency of the fluorescence process. For a higher number density of
fluorophor molecules, obviously, the probability will increase to collide with
each other while in an excited electronic state. We will address this compet-
ing ‘collisional quenching’ effect explicitly below. For the evaluation of Φf of
a given compound, usually a very dilute solution of a known molar concen-
tration is probed in comparison to a well known fluorophor (for more detail
cf. Guilbault, 1973, pp. 12). Most solutions are at 10−3 M/l, and at room
temperature.
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Also the kind of solvent will play a role for the efficiency of the fluorescence
process. We will disregard the effect of viscosity here, as we were not allowed to
change the flow medium. More important, the pH value of the solution strongly
affects not the quantum efficiency, but the absorbtion coefficient ε or k of many
fluorophor compounds. Smart & Laidlaw (1977) reviewed the early litera-
ture also on the pH dependance of fluorescence in their useful survey of fluores-
cent dyes for water tracing. A strong pH sensitivity of fluorescein disodium—a
commonly used fluorescent dye—has been reported frequently (e.g. Walker,
1987). Coppeta & Rogers (1998) reported a LIF-based planar measurement
technique for pH and temperature to examine mixing processes in turbulent
shear flows. They also presented pH and temperature sensitivities for a sub-
stantial selection of possible LIF dyes. Within the framework of our study
on shallow wake flows rhodamine B and sulphorhodamine B were regarded
the most suitable dye tracers for the LIF measurements. Smart & Laidlaw
(1977) as well as Coppeta & Rogers (1998) stated that no pH dependance of
the molar absorbtivity had been observed for both rhodamine B (in a pH range
above 6 pH) and sulphorhodamine B (in a range between 3 pH and 10 pH).
In return, both dyes show the strongest temperature sensitivities compared to
other fluorophor compounds used for laser induced fluorescence.

Finally, recall that the fluorescence process also depends on the wave length
spectrum of the exciting and emitted light. Firstly, the molar absorbtivity of a
fluorescent compound, and thus its extinction coefficient, strongly varies with
the wave length of the incident radiation, i.e. ε = ε (λ) or k = k (λ). The wave-
length dependance of the light absorbtivity has already been illustrated from
the extinction spectra of the fluorophors employed in our LIF measurements,
as shown in Figure 4.6. The fluorescence emission spectra are usually obtained
from a monochromatic excitation at the maximum absorbtion wave length
λmax. If, secondly, the fluorophor will be excited at a different wave length
than λmax, as is the case for most LIF applications, the emission spectrum will
differ in shape e.g. in the peak fluorescence emission wave length, since the kind
and extent of the deactivating molecular transitions that are involved in the
fluorescence process significantly depend on the amount of absorbed quantized
energy. Thirdly as an additional technical aspect, the receiving optics usually
do not allow for monitoring the full fluorescence emission spectrum. Therefore,
the value of the quantum efficiency has to be reduced according to the width of
the spectral window established by the employed receiving optics. For instance,
in the present experimental setup we used a narrow band-pass filter at 590 nm,
hence only a small part of the radiant energy distributed along the whole
emission spectrum was received.

Quenching effects. In fluorescence spectroscopy any process which reduces
the intensity of the fluorescence radiation is called fluorescence quenching
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(Slavik, 1994, pp. 246). One can distinguish different types of quenching mech-
anisms, among them:

Static quenching results from a reaction of the fluorophor A in its ground–state
with a quencher Q to form non-fluorescent complexes AQ. This process re-
duces only the number density of free fluorophors A, i.e. the extinction
coefficient ε of the solution, and effectively, the concentration c. The life-
time of the exited fluorophors A* remains the same, since the remaining
uncomplexed fluorophors are not affected by the quencher.

Dynamic quenching describes the interaction of the quencher Q with the ex-
cited fluorophor A*. This mechanism—also called collisional or concentra-
tion quenching—results in a decrease of the lifetime of A*, because the
excited fluorophors may be deactivated non-radiatively via collisions prior
to re-emitting the absorbed energy as fluorescent light.

Note that for both static and dynamic quenching the fluorophor itself may
act as a quencher. Also the mechanisms reducing the quantum efficiency, as dis-
cussed in the previous paragraph, could be regarded static or dynamic quench-
ing, or at least to influence the quenching processes. Since the attenuation of
the incident and emitted light reduces the fluorescence intensity from a holistic
point–of–view, this is sometimes denoted ‘trivial quenching’.

More rigidly, in this work the term ‘quenching’ describes only the dynamic
quenching processes. The iodide ion and the molecular oxygen belong to the
best fluorescence quenchers. The quenching capability of O2 led to the im-
plementation of LIF–based measurement techniques to measure the oxygen
concentration in fluid flows. Münsterer & Jähne (1998) used HCl to re-
place the gas molecule by an ion in order to investigate the gas exchange in
the air–water boundary layer.

Care always has to be exercised when conducting LIF experiments, since
also unexpected and unwanted influences may easily and irreversibly be intro-
duced to the measurements. These erroneous processes are specially termed
impurity quenching, i.e. the quenching due to the presence of an additional un-
noticed compound competing with the fluorophor in the fluorescence process.
For instance, Sakakibara & Adrian (1999) reported the use of a fluoropoly-
mer stirring bar, which significantly reduced the quantum efficiency of an aque-
ous Rhodamine B solution immediately after its preparation, though later the
fluorescence radiation recovered asymptotically toward a reference value of a
glass–stirred solution.

In the present LDV-LIF measurement setup the only quenching com-
pound with variable concentration was the fluorescent dye itself. Concentration
quenching of the fluorophor led to further concentration-dependent deviation
from a linear LIF relation, and thus had to be implemented in an extended
LIF model equation. We made no attempt to prevent oxygen quenching by
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de-gassing the fluid, since the shallow flow setup using a 80 m2 free surface
and flow depths of 17 mm to 38 mm would ensure a rapid re-aeration. In-
stead we assumed the tap water solution to be saturated showing a constant
O2 concentration in the longitudinal and lateral flow direction. As stated by
Guilbault (1973, p. 25), oxygen—present in solutions at a concentration of
about 10−3 M—normally reduces the fluorescence of a typical compound by
approximately 20%. The decrease of the fluorescence intensity due to oxygen
quenching therefore was incorporated in the extended LIF model equation, and
in the calibration procedures of the LIF system.

Further photo-optical aspects. The received fluorescence intensity, avail-
able from a given incident radiation, can be further reduced by additional
chemical and optical phenomena.

Photo-chemical decomposition of the fluorophor, or photobleaching, is a
well-known process that has been reported frequently also in the context of
fluorescent flow markers e.g. by Smart & Laidlaw (1977); Walker (1987);
Arcoumanis et al. (1990); Crimaldi (1997); Wang & Fiedler (2000a,b).
Due to the high-intensity incident radiation of LIF photo-chemical processes
may render the fluorophor incapable of fluorescing even after a short exposure
time. The capability of photobleaching may depend on kind and concentration
of the fluorescent compound, on the solvent, on the exposure time and on the
incident light intensity. Nevertheless, the proper representation of photobleach-
ing in LIF measurement techniques only recently entered scientific discussion,
and is still ambiguous, Crimaldi (1997) and Wang & Fiedler (2000a) pro-
posed different model equations to describe the process of photobleaching.
But there is general agreement that, contrarily to fluorescein sodium, the rho-
damine dyes display a good photo-stability. If we would employ rhodamine 6G
in the present experimental setup, from Crimaldi (1997) a flow velocity of
U > 1 cm/s would restrict the decrease of the fluorescence intensity to less
than 1% for an arbitrary concentration. Since for all flow configurations con-
sidered here U always was well above 10 cm/s, we assumed the effect of photo-
decomposition to be of minor influence in the present measurement setup and
flow configuration, and thus, to be negligible compared to light attenuation,
concentration quenching, and temperature dependance.

Light passing through media of different optical density is subjected to re-
flection and refraction. Rapid changes in the indices of refraction at distinct
interfaces of different media lead to rapid changes in the direction of light
propagation. But also gradual changes of the index of refraction within a fluid
due to density gradients, e.g. due to changes in temperature, salinity, or con-
centration of suspended matter, will alter the light path. This phenomenon—
sometimes denoted as thermal blooming or wobbling—may result in a partly
or total loss of the measurement plane or measurement volume. In general,
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optical measurements of turbulent mixing processes are susceptible to thermal
wobbling because of their strongly varying density gradients. Thermal wob-
bling surely has to be taken into account, if light is passing through fluid of
variable density over a long distance compared to the spatial resolution of the
measurement system. Such problems were reported in thermally driven flows
by Nash et al. (1995) for large–scale planar-LIF with beam paths up to 5 m,
and by Wang & Fiedler (2000a,b) for high–resolution point-LIF with a di-
ameter of the measurement volume of 4 µm. Similar problems may occur, when
investigating the mixing of fresh- and saltwater. In the present application the
lengths of the beam paths were comparably short, and the density gradients
were rather weak due to the generally low concentration of the fluorophor.
Therefore, beam wobbling was not expected to become a severe problem in
the present LDV-LIF measurement setup.

The alignment of the emitting and receiving optics can also influence the flu-
orescence signal. The usual arrangement of a pointwise LIF system employs a
single well-collimated laser light beam for the excitation of the fluorophor. The
receiving optics, masked by narrow pinholes, are aligned perpendicular to the
incident beam as a 90◦ off-axis arrangement, which ensures an approximately
spherical measurement volume.12 The present on-axis backscatter arrangement
is well-suited for the intended non-intrusive synoptical LDV-LIF measurements
in a shallow plane shear flow. Since the fluorescence radiation is diffusely emit-
ted in the full solid angle, the intensity of the received fluorescent light does
not depend on the direction of observation. As a trade-off, the measurement
volume of the LIF consists not only of the intersection of the 4 laser beams, but
of the 4 individual beams. It is delineated by the blocking masks and collecting
lenses of the receiving optics, but still it might exceed the LDV measurement
volume to a certain amount. In order to check the size of the LIF measurement
volume, one has to evaluate to what extent the fluorescence emission excited
by a single beam outside the LDV measurement volume contributes to the LIF
signal.

Firstly, it has been verified experimentally that the depth of the fluid vol-
ume below the LDV measurement volume, traversed by the diverging four laser
beams, did not change the reading of the received fluorescence intensity no-
ticeably, i.e. that the LIF measurement volume was congruent with the LDV
measurement volume in the downward direction. For a proper alignment of the
laser beams this applied also to the measurement volume in the upward direc-
tion. Hence, the length of the LIF measurement volume should correspond to
that of the LDV system. Secondly, it has been ascertained also for the LDV

12 Analogously, for planar LIF measurements a thin light sheet is generated to stimulate
the fluorescence radiation, which is observed using a camera device in an out-of-plane
arrangement. The measurement volume for a PLIF system is defined by the thickness of
the light sheet and by the spatial resolution of the recorded image.
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measurements that the 4 laser beams overlapped almost perfectly at the in-
tersection of the measurement volume, i.e. that in the focal point the 4 beams
were congruent. Therefore, the width of the LIF measurement volume was
equal to the width of the LDV measurement volume. Albeit the shape of the
LIF measurement volume was surely not a perfect ellipsoid, and the measure-
ment volumes both of LDV and LIF therefore could not be identical, at least
the dimensions of both volumes were the same. We therefore concluded that
the alignment of the emitting and receiving optics would meet the requirements
of combined LDV-LIF measurements.

4.2.5 Verification and validation of an extended LIF model relation

Shallow turbulent wake flows, and especially vortex street-like wakes, may
reveal a strong variability of scalar concentrations c in the flow field. In the
near-field of the wake we may find high-concentration fluid enclosed in stable
vortex cores surrounded by regions of intense mixing and high intermittency
showing also parcels of entrained unmixed ambient fluid. In the far-field scalar
differences may largely be equalized due to turbulent mixing, the turbulent
scalar field now being characterized by small-scale high-frequency fluctuations.
To access the scalar pattern and the scalar transport we need a measuring
technique capable of resolving strong scalar gradients over a wide measurement
range with a high resolution.

Instead of simply calibrating an evaluation algorithm for the LIF system
in order to apply a linear LIF technique according to (4.15), we will derive
and calibrate an appropriate LIF model equation to describe also non-linear
relations between If and c. This allows to extend the measurement range of
mass concentrations toward higher c well beyond the linear range, and thus
to maintain a strong fluorescence signal for a given moderate incident light
intensity I0.

From the linear LIF equation (4.15) we have If ∝ I0 c for a given measure-
ment system and setup (i.e. for predefined values of Φf , k, Aopt, lmv). In order
to increase the intensity of the fluorescence radiation, instead of increasing c
beyond the linear regime, one could also keep c low, and increase the incident
light intensity I0. This would increase the sensitivity of the LIF system, and
allow to access even lower concentrations. Nevertheless, the application of a lin-
ear LIF evaluation algorithm would imply further consequences which prevent
such an approach in the present setup. With respect to a combined LDV-LIF
system, the LDV measurements do not benefit from higher I0, but disadvan-
tages (e.g. poor signal-to-noise ratio) have to be dealt with. Regarding the LIF
measurements, chances increase that photo-decomposition of the fluorophor
would become a serious problem that would have to be parameterized and cal-
ibrated in an appropriate LIF model equation. The temperature dependance
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of fluorescence—being a characteristic property of the fluorescent compound—
still has to be incorporated into such a model equation. Increased I0 may lead
to unwanted transition to saturated LIF also involving non-linearity during
transition. Finally and crucially, in the present setup LIF measurement runs
need stable I0 for the time of each run (up to 120 min). This is impossible to
guarantee for high laser power, instead chances are high to destroy the optic
fibers or optical components in the couplers of the beam-separator.

For the present experimental boundary conditions a non-linear LIF mea-
surement technique has therefore been applied, which necessitated the imple-
mentation of an extended non-linear LIF model equation in order to represent
the relevant influences of beam attenuation of the incident light, concentration
quenching, and temperature dependance of the fluorescence.

Beam attenuation. For the present LDV-LIF measurement setup all attenu-
ation effects will be related to an initial light intensity I0 given by the total ra-
diation of the four beams immediately in front of the probe optics.13 Along the
optical path the light is attenuated both locally at optical discontinuities and
continuously within the optical media. On the receiving side of the LDV-LIF
system local losses result from the splitting and filtering of the polychromatic
signal prior to the opto-electric conversion by the photomultipliers—these are
incorporated into a bulk optical system parameter Aopt. Additionally, we usu-
ally introduced a small disk made of crown glass into the incident and receiving
beam paths. The disk (thickness 6.35 mm) was positioned as to touch the free
water surface in order to improve and control the transition of the beams be-
tween air and flowing water (see Section 4.1 for more detail), its transmissivity
ηdisk was evaluated to be 92% to 93% slightly depending on the light intensity.

Regarding the spatially continuous attenuation the absorbtion of incident
light along the beam paths in the flow due to the fluorescent compound is
the most dominant effect. Assuming a vertically homogeneous distribution of
the fluorophor the continuous decrease of the incident light intensity Ie can be
described using (4.13a). The logarithmic extinction or absorbtion coefficient
k (λ) in the exponential term has to be evaluated for a given solution and wave
length spectrum of excitation. For the 2D LDV measurements equally strong
beams of λbg = 488 nm and λg = 514.5 nm were employed. For both fluorescent
dyes light was significantly more susceptible to absorption at λg, as is evident
from Figure 4.6. Bulk extinction coefficients k̃ = k (λg, λbg) were evaluated
by observing the attenuation of Ie (c) along a 75 mm long optical path in a
fluorophor solution of various concentrations. The temperature of the solution
was kept constant to exclude influences on k. Figure 4.7 exemplifies the cali-

13 The losses of light power between the laser tube and the probe are about 60% to 70% at
best, mainly located in the beam–separator. Almost 40% of the laser power is contained in
the blocked frequencies of the Ar+ spectrum, but also the feeding of the monochromatic
light into the individual optical fibers is a lossy process.
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Figure 4.7. Laser light beams λg and λbg of equal strength were attenuated while passing
through homogeneous rhodamine B solutions along an optical path of length 75 mm. The
concentration of the solution ranged up to 500 µg/l. The light intensity Ie is normalized by it’s
zero-concentration reference value Ie,ref according to (4.19). The bulk extinction coefficient

was evaluated to be k (λg, λbg) = 1.11 · 104
�
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�
−1

= 6.46 · 103
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bration of a bulk k for rhodamine B. The intensity of the attenuated incident
light is normalized using a reference value Ie,ref at a given concentration—here
cref = 0, i.e. Ie,ref = I0 in case of no further sources of attenuation. By fitting
(4.13a) in non-dimensional form yielding

Ie (c)

Ie,ref
= e−b k c , (4.19)

the logarithmic extinction coefficient for rhodamine B is obtained, k̃ =
k (λg, λbg) = 1.11 · 104

(
m kg/m3

)−1
= 5.32 · 103

(
mM/m3

)−1
. The

corresponding decadic extinction coefficients ε̃ = k̃/ ln (10) = 0.48 ·
104

(
m kg/m3

)−1
= 2.31 · 103

(
mM/m3

)−1
are significantly lower than the

values at the maximum extinction wave length λmax reported in literature (cf.
Table 4.3).

For sulphorhodamine B the bulk logarithmic extinction coefficient was
found to be k̃ = k (λg, λbg) = 5.12 · 103

(
m kg/m3

)−1
= 2.97 ·

103
(
mM/m3

)−1
. The logarithmic and molar values are lower compared to

rhodamine B.
As demonstrated in (4.18) also the attenuation of the re-emitted fluores-

cent radiation could be taken into account. Then, additionally the extinction
coefficients for the fluorescence spectrum would have to be evaluated, or a bulk
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coefficient also including attenuation along the receiving optical path has to
be obtained. This has been done using a similar calibration setup to verify
that attenuation of the fluorescent radiation was negligible compared to the
attenuation of the incident light.

Temperature dependance. Most organic fluorescent dyes display a pro-
nounced sensitivity of their quantum efficiency Φf to temperature variations
(see for instance Guilbault (1973, p. 14, pp. 24)). Within the framework
of our study on shallow wake flows rhodamine B and sulphorhodamine B
were regarded the most suitable dye tracers for the LIF measurements. Both
dyes show the strongest temperature sensitivities compared to other fluorophor
compounds used for laser induced fluorescence (approximately -1.55% per K
(Coppeta & Rogers, 1998), others report up to -2% K-1 for rhodamine B).
On the contrary, the extinction coefficient ε usually is insensitive to changes
in temperature, for rhodamine B the temperature sensitivity of ε was reported
to be 0.05% per Kelvin (Sakakibara & Adrian, 1999). Hence, for the em-
ployed LIF tracer dyes the temperature dependance of the fluorescence radia-
tion is solely ascribed to their quantum efficiency, their extinction coefficients
are regarded effectively temperature–invariant.

In order to represent the decrease of the quantum efficiency Φf , and thus,
the decrease of the fluorescence intensity with increasing temperature T , we
use an exponential expression

Φf (T ) = Φf,0 e
mT (1−T/T0) (4.20)

that relates the quantum efficiency to a reference value Φf,0 at a ref-
erence temperature T0. A similar exponential approach was reported by
Smart & Laidlaw (1977), other authors (e.g. Sakakibara & Adrian,
1999) avoid to parameterize a relationship, though also from their data an
exponential decay is evident.14

Figure 4.8 shows the variation of the normalized fluorescence intensity
depending on the temperature for a homogeneous rhodamine B solution of
c = 50 µg/l. For a constant concentration the relative fluorescence intensity
described by (4.13b) reduces to If/If,ref = Φ (T ) /Φ (Tref ). For temperatures
ranging from 13◦C to 30◦C a temperature sensitivity coefficient mT = 0.4578
is obtained from (4.20) with a reference temperature of T0 = 20◦C. This repre-
sents a linearized decrease of 2.3% K-1 at T0. From Smart & Laidlaw (1977)
a higher value of the sensitivity coefficient of about 0.54 can be inferred.

For a sulphorhodamine B solution the temperature sensitivity coeffi-
cient is mT = 0.4834 for T0 = 20◦C, i.e. its quantum efficiency is
14 Planar LIF measurements are sometimes employed to obtain temperature distributions in

a flow field. In order to restrict the processing time, the evaluation of T usually is based
on a simplistic linear decay model (e.g. Dantec’s FlowMap software for PIV/PLIF mea-
surements), which drastically reduces the measurement accuracy for larger temperature
differences.
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Figure 4.8. The temperature–sensitivity of the quantum efficiency Φf is illustrated from
the normalized fluorescence intensity of a 50 µg/l rhodamine B solution. Over a temperature
range of 13◦C to 30◦C a temperature sensitivity coefficient of mT = 0.4578 is calibrated for
the model equation (4.20) using T0 = 20◦C.

slightly more temperature–sensitive than rhodamine B, in agreement with
Smart & Laidlaw (1977).

Concentration quenching. The variation of the fluorophor concentration in
the measurement volume influences the amount of emitted fluorescence radia-
tion. Contrary to attenuation of the laser light along the incident beam path,
due to concentration quenching in the measurement volume the intensity of flu-
orescence emission, stimulated by a given absorbed amount of light energy, is
reduced—by non-radiative inter-molecular energy transitions. For higher con-
centrations of a fluorophor the fluorescence (quantum) efficiency of a solution
is reduced with increasing concentration due to self-quenching. The effect of
concentration quenching can be represented in a LIF model equation using an
exponential damping of the form e(−qc c). In order to quantify the concentration
quenching coefficient qc, calibration measurements at known high fluorophor
concentrations have been conducted at a flow boundary, i.e. no attenuation
along the optical path in the flow had to be considered, since b = 0. The flow
temperature was monitored and represented in the quantum efficiency accord-
ing to (4.20). To avoid any implication of photo-decomposition a sufficiently
high flow velocity was maintained. The fluorescence intensity If , normalized
by a reference intensity If,ref usually at c = 50 µg/l, is given by

If (c, T )

If,ref
=

c

cref
e−qc(c−cref) e−k b(c−cref) e

mT

�
Tref−T

T0

�
. (4.21)
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The concentration quenching coefficients qc for rhodamine B and sulpho-
rhodamine B have been evaluated to be 241.8 m3/kg and 451 m3/kg, respec-
tively.

Neglecting the effect of concentration quenching when inferring the con-
centration from the measured fluorescence will result in an error of 1% for a
40 µg/l rhodamine B solution, and in an error of 9.2% for a 400 µg/l solution.

Extended LIF model equation. The descriptive model equation for the
intensity If of the fluorescence radiation—emitted in the direction of the re-
ceiving optics of the present LDV-LIF measurement system—will cover the
following attenuation effects, as presented above:

• reduction of the incident and emitted light intensity due into optical compo-
nents introduced to the optical path outside the measurement system using
a transmissivity ηopt,

• attenuation of the incident light intensity Ie with respect to I0 along the
optical path in the fluorophor solution using an exponential decay law (4.19)
and a specific extinction coefficient k̃ adapted to the wave number spectrum
of the excitation,

• temperature sensitivity of the quantum efficiency Φf employing a model
approach (4.20) with a temperature sensitivity coefficient mT ,

• decrease of the fluorescence intensity If due to concentration quenching in
the measurement volume described by an exponential equation (4.21) with
a quenching coefficient qc.

An extended LIF model equation, based on (4.13) for homogeneous concentra-
tion distribution along the optical path, relates the observed intensity If of the
fluorescence to the mass concentration c of the fluorescent compound in the
solution. In conclusion,

If = ηopt Aopt `mv Φf I0 k̃ c e
−k̃ b c e−qc c emT (1−T/T0) , (4.22)

where I0 [W] light intensity at probe optics
ηopt [-] transmissivity of optical components

in optical path
Aopt [-] aperture ratio of receiving optics,

i.e. ratio of received to emitted radiance
`mv [m] length of the measurement volume
Φf,0 [-] quantum efficiency of fluorophor at T0

k̃ [m2/kg] specific extinction coefficient
c [kg/m3] mass concentration of fluorophor
b [m] optical path length in fluorophor solution
qc [m3/kg] concentration quenching coefficient
mT [-] temperature sensitivity coefficient
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T0 [◦C] temperature of reference solution
for quantum efficiency

For the present LDV-LIF measurement system a voltage signal Uf of the
third photomultiplier provides the information on the fluorescence intensity
If received by the probe optics. For further analysis of the concentration
data using the extended LIF model equation (4.22), Uf first has to be con-
verted into If applying a conversion factor. Because of the statistical mutual
dependence of such a device-specific conversion coefficient and the—still un-
known15—quantum efficiency in (4.22), only the product of both quantities
can be calibrated. For clarity we will also incorporate Aopt and `mv, defined
by the probe optics of the employed system, into a conversion coefficient P0,
which is specified by the given measurement system and setup. The amplifi-
cation of the photomultiplier has to be adjusted before each measurement run
according to I0 and to the maximum concentration to be resolved. In order
to represent this effect an amplification coefficient fpm has to be calculated
before each measurement—being the only parameter to be calibrated repeat-
edly. From (4.22) we obtain the device-specific conversion equation for the LIF
system

Uf = ηopt fpm P0 I0 k̃ c e
−c (k̃ b+qc) emT (1−T/T0) , (4.23)

where Uf [V] voltage signal of LIF photomultiplier
fpm [-] measurement-specific amplification

coefficient
P0 [Vm/W] device-specific conversion coefficient

incorporating also Φf,0, Aopt, and `mv

Details on the procedures and results of the calibration and verification of
the extended LIF model equation are presented in v. Carmer et al. (2000).
Table 4.4 summarizes the necessary coefficients for the application of (4.23)
calibrated for the present LDV-LIF measurement system using a two-color
excitation with the fluorophors rhodamine B or sulphorhodamine B solved in
tap water.

Figure 4.9 illustrates the applicability of the extended LIF model equation
(4.22) for rhodamine B solutions—using the device-specific formulation of the
conversion equation, (4.23). Measured values of the fluorescence intensity are
given for homogeneous mass concentrations up to 500 µg/l, and for three dif-
ferent attenuation path lengths b = 0 mm, 20 mm, and 100 mm indicated by
l, n, and s, respectively. Full lines indicate the corresponding model results.

15 The quantum efficiency of the fluorophor solutions can be accessed by spectrofluorometric
means using a reference measurement of a fluorophor solution of known Φf , as mentioned
by Guilbault (1973).
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Table 4.4. Coefficients for the extended LIF model equation in device-specific form (4.23)
calibrated for a two-color Ar+ excitation of rhodamine B and sulphorhodamine B solutions
in tap water

coefficient units description rhodamine B
sulpho-
rhodamine B

P0 [Vm/W] conversion coefficient 0.0191 0.0262

k̃ [m2/kg]
specific logarithmic absorbtion
coefficient

11,098 5,115

qc [m3/kg]
concentration quenching
coefficient

241.8 451.0

mT [-] temperature sensitivity of Φf 0.4578 0.4834

T0 [◦C] reference temperature for Φf 20 20

Figure 4.9. Normalized fluorescence intensities of rhodamine B solutions up to 500 µg/l are
displayed for optical path lengths of b = 0 mm, 20 mm, and 100 mm indicated by l, n, and
s, respectively. Normalization is done by the value at reference concentration cref = 50 µg/l.
Full lines indicate the corresponding results of the extended LIF model equation in the device-
specific formulation (4.23). The dashed line shows the model simulation of the b = 0 mm
data without representing the effect of concentration quenching. It represents a near-linear
LIF equation for low concentrations including only the temperature–sensitivity of Φf due to
an increase of temperature by 1.3◦C.
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The dashed line represents a model simulation for b = 0 mm without the effect
of concentration quenching. Hence, it visualizes the results of the nearly lin-
ear model adapted to the low-concentration measurements with c ≤ 50 µg/l,
neglecting all non-linear fluorescence attenuation effects but the temperature
sensitivity of Φf . The fluorescence intensities of each sequence have been nor-
malized by their corresponding reference value If,ref at a mass concentration
cref = 50 µg/l, which—for b = 100 mm and k̃—constitutes the 5% attenu-
ation limit (4.16) proposed by Guilbault (1973). The normalized intensity
If/If,ref is given by (4.21), the same relation is achieved from normalizing the
conversion equation (4.23). Temperature was allowed to increase by 1◦C to
1.5◦C during each measurement sequence, hence the temperature-dependent
decrease of the quantum efficiency had to be included in the model calcula-
tions. For b = 0 mm beam attenuation did not occur, the dashed line indicates
the non-linearity solely due to a temperature increase by 1.26◦C from the mea-
surement at c = 0 µg/l to the measurement at c = 500 µg/l. The isolated effect
of concentration quenching in the measurement volume can be obtained from
the difference between the b = 0 mm full and dashed lines.

To assess the necessity for application of the extended non-linear LIF model
instead of the linear approach, we can extend the Guilbault criterion (4.16)
that not more than 5% of the incident light should be lost due to beam at-
tenuation. Now, the total deviation of the observed fluorescence intensity from
the value predicted using the linear LIF equation (4.15) should not exceed 5%.
Then, the non-linear deviation is compiled from the effects of light attenuation
along the optical path, concentration quenching of the fluorescence process,
and temperature-sensitivity of the quantum efficiency,

If
If,lin

= e−c (k̃ b+qc) emT (1−T/T0)
!
≥ 0.95 . (4.24)

If we assume that the temperature T does not deviate from the reference
temperature T0, i.e. that the quantum efficiency Φf does not deviate from its
reference value Φf,0, then we can calculate the allowable maximum concentra-
tions for the present measurement setup. Table 4.5 lists cmax of rhodamine B
for a deviation of linear LIF in fluorescence of 5% (Guilbault, 1973), and of
1.6% (Walker, 1987) for optical path length of b = 0 mm, i.e. concentration
quenching only, b = 20 mm, and b = 100 mm. Obviously, both non-linear ef-
fects, beam attenuation and concentration quenching, will significantly reduce
the emitted fluorescence intensity. Applying a linear LIF model to such data
will therefore result in considerable underestimation of the mass concentrations
to be examined.

The analog voltage reading of the LIF photomultiplier with a signal range
of 10 V was digitized with a depth of 12 bit resulting in an digitization interval
of 2.44 mV. Employing a 1kHz low-pass filter the signal noise could be reduced
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to approximately 5 mV. The accuracy of the signal was expected to be of
the order O (∆Uf ) = 0.01 V, i.e. the effective resolution of the signal range
was about 10 bit. Assuming a linear proportionality of the fluorescence and
the concentration, i.e. the applicability of a linear LIF model, over a range of
500 µg/l thus resulted in a maximum resolution of ∆c = 0.5 µg/l. However,
due to non-linear attenuation effects which had to be included in the extended
LIF model the resolution could decrease significantly at higher concentrations
near the saturation of the fluorescence process. In the example of Figure 4.9 for
an attenuation length of 100 mm near 500 µg/l the signal resolution of 10 mV
corresponded to a concentration resolution of 4.3 µg/l only, the accuracy was
reduced by almost a full order of magnitude due to non-linear attenuation.

Implementation of an extended LIF model. From the extended LIF
model equation (4.22) the radiance of a laser induced fluorescence process can
be predicted. The device-specific conversion equation (4.23) can be used to
directly predict the voltage reading of the LIF measurement system for known
c and given experimental boundary conditions. Obviously, the inverse problem
has to be solved with the LIF setup, i.e. to infer the mass concentration c in
high spatio-temporal resolution from the measurement data Uf . Therefore, a
procedure to solve (4.23) for given Uf and unknown c has been implemented
in the LIF data processing program.

For a given LIF system and experimental setup the device-specific conver-
sion equation has been discretized with respect to c with high resolution (e.g.
12 bit), as to obtain a lookup-table ĉ – Uf (ĉ). Each data point Uf (t) of the
voltage signal time series then was interpolated linearly to the discretized con-
version equation Uf (ĉ). Hence, effectively, an inverse solution was obtained
from a high-resolution piecewise linearization of (4.23).

Table 4.5. Largest tolerable mass concentrations are calculated using (4.24) for different
allowable deviations of the fluorescence from the linear LIF model equation, and for different
optical path lengths. The present LIF measurement setup is applied to rhodamine B solutions
of temperature T = T0.

optical path length maximum concentration [µg/l]

b [mm]
If

If,lin
≥ 0.95

If

If,lin
≥ 0.984

0 212 65

20 111 34

100 38 12
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4.3 Combined LDV-LIF system

Combined LDV-LIF measurement systems that allow for the simultaneous ac-
quisition of both flow velocities and a scalar quantity have been accomplished
only rarely compared to the ubiquitous application of individual LDV sys-
tems. Thus, turbulent mass fluxes 〈u′c′〉 received much less attention than the
turbulent momentum fluxes 〈u′

u
′〉.

Being one of the pioneers of combined non-intrusive measurements for flow
and scalar, Papanicolaou & List (1988) realized a combined setup using
independent measurement systems of LDV and LIF in order to investigate a
turbulent vertical buoyant jet flow. They employed a forward-scattering two-
reference-beam LDV to obtain two velocity components, and an off-axis LIF
with an incident laser beam perpendicular to the LDV measurement volume.
The dye tracer rhodamine 6G was excited with a monoline Ar+ laser.

Lemoine et al. (1996, 1997) used a combined LDV-LIF system powered
again by a monochromatic Ar+ laser at λg = 514.5 nm. The receiving optics
were oriented in an off-axis forward-scattering alignment, and collected the
polychromatic scattered and fluorescent light, which was passed through a
fibre-optical cable and then split for further processing as needed for LDV
or LIF. Advantageously, their system guaranteed for spatial coincidence since
only one measurement volume had to be employed. But it comprised only 1D
velocity measurements, and the forward-scattering arrangement again required
transparent measurement sections in the flow facility.

4.3.1 Technical implementation of LIF to LDV

The energy for the LIF measurements was also provided by the laser source of
the LDV system, the continuous-wave Ar+ laser. The polychromatic light emit-
ted from the laser tube was set to a total intensity integrated along the Ar+

spectrum of about 0.5 W. Then, a total power of 150 mW to 200 mW was ob-
tained in the measurement volume, that was equally distributed between the
four green and blue-green beams of wave-lengths λg = 514.5 nm and λbg =
488 nm, each color with shifted and un-shifted frequency. The laser tube was
operated in a light-stabilized mode ensuring a variation of the power output
below 1.0%. In order to omit any drifting of the light intensity during a longer
LIF measurement, it was necessary to run the laser tube for about 6 h in ad-
vance to get all optical components along the whole optical path under working
conditions. Especially the coupling devices needed extra care, as they usually
run out of focus during warm-up. Applying this pre-run allowed for excellent
stability of the light power in the measurement volume, as was ascertained for
each LIF measurement run.
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The measurement volume of the LDV system was defined by four intersect-
ing laser beams, small tracer particles crossing the illuminated fluid volume
scattered light with Doppler-shifted frequencies. Together with the LDV tracer
particles the fluid carried a soluble fluorescent dye of low concentration, that
was excited by absorption of laser light and re-emitted the absorbed energy
as fluorescent radiation of a spectral distribution characteristically for the em-
ployed dye. The measurement volume of an LIF system is therefore restricted
by the volume illuminated by a laser light beam, but it is not restricted to the
volume of two intersecting and interfering laser beams as for LDV systems.
Hence, a specific alignment and optical instrumentation of the receiving op-
tics is necessary to further limit the LIF measurement volume. More common
single–beam pure LIF systems, as well as few combined LDV-LIF systems,
use optics in off-axis arrangement with infinite focal depth, and a very narrow
field of observation. In contrast, the present on-axis backscatter arrangement
(emitting and receiving optics are aligned with the same optical axis) needs a
very low depth–of–field focussed exactly on the LDV measurement volume to
reduce the vertical extent of the LIF measurement volume. It has been verified
experimentally that the length of the fluid volume beyond the measurement
volume, traversed by the diverging four laser beams, does not contribute no-
ticeably to the fluorescence intensity emerging from the measurement volume.
The lateral extent of the LIF measurement volume is additionally restricted
by blockage of most of the fluorescence radiation using pinhole masks.

The radiation received by the optical probe, thus, consisted of a portion
elastically scattered—despite the Doppler effect—from the tracer particles tra-
versing the measurement volume (i.e. the solid phase of the flow), and another
portion inelastically scattered from the fluorescent dye in the fluid volume (i.e.
the liquid phase of the flow). The time for the excitation and extinction of a
fluorescent dye usually is of the order of few nanoseconds (e.g. approximately
3 ns to 5 ns for rhodamine dyes (Guilbault, 1973)), whereas it takes some
microseconds for a particle to cross the measurement volume (for the current
low-speed application ' 100 µs, and even ' 20 µs for a valid burst signal).
Therefore, the polychromatic signal passed by the multi-componential receiv-
ing fiber to the ColorLink multi-color receiver contained synoptical informa-
tion about the motion of small tracer particles and about the concentration of
a solute tracer mass in the same fluid volume. The synchronous LDV and LIF
signals then underwent time-consuming processes of transformation, amplifi-
cation and analysis, during which the synchronicity had to be maintained.

The received light was divided into three parts, each of which was sub-
jected to a narrow optical band-pass filter—of λ = 590 ± 5 nm for the LIF
signal on the third channel—to separate the frequencies carrying the LDV and
LIF signals. Using photomultipliers the optical signals were then transformed
into electrical signals of 0 V to 10 V DC. The electrical LIF signal was low-pass
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filtered with 1 kHz, then passed over to the DataLink Multichannel Interface.
There, the signal was digitized with a depth of 12 bit, and provided with an
initial time code. For every valid burst event the LDV burst signal analyzer
requested the corresponding LIF signal value from the DataLink.16 Thus, the
velocity information was related to the synoptical mass concentration data,
and transferred via the DMA interface to the PC. Albeit the velocity informa-
tion was computed from the beat frequency ∆f of the Doppler-shifted signals
using (4.4b) without any further calibration, the voltage signal of the mass
concentration measurement required a proper calibration of the LIF transfer
function (4.23) prior to each LIF measurement run.

4.3.2 Equal interval re-sampling of LDV and LIF data

During the LDV-LIF measurements for this project, the velocity data were
sampled randomly as they were observed, i.e. not at equal time intervals. Ad-
ditionally, the coincidence time window between the two LDV channels was
chosen relatively wide, so that no burst on either channel was rejected because
of a missing burst on the other channel. Otherwise, a (temporally) lower data
rate on one of the channels would automatically restrict also the data rate
on the other channel. Therefore, the data for both horizontal velocity compo-
nents were not acquired co-incidentally. i.e. the instantaneous shear stresses uv
are not cross-correlated a priori. By avoiding both the equal-interval sampling
and the forced coincidence of bursts, it was ensured, that all valid bursts were
used, and thus the maximum amount of the available velocity information was
stored for further analysis. As mentioned above, the fluorescent light intensity
was captured synchronously to each velocity burst, i.e. the data pairs uc and
vc can be regarded as in fact co-incident information.

The data sets, acquired randomly with only a loose coincidence interval,
assure the highest possible amount of information. Furthermore, every single
observation (or burst event) was stored together with a so-called “time stamp”
to keep track of the time sequence with respect to the start of the LDV mea-
surement and with a time resolution of 10−6 s. This provides the opportunity
to apply post-processing algorithms, which are adjusted and optimized for the
given data quality and for the particular objectives of a data analysis.

The objectives of the LDV-LIF measurements in this project are two-fold.
Firstly, we are interested in the mass transfer rates 〈uic〉 as well as in the
momentum fluxes 〈uiuj〉. The mass transfer rates are obtained from the random
data without further review of the coincidence intervals, since the coupling of
the LIF to the LDV ensures the synoptic measurement of a mass concentration

16 The DataLink usually is employed to associate the LDV signals with corresponding
system information like a rotor angle in turbo machinery, or the time after ignition or
after fuel injection in combustion technology.
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to each velocity observation. Contrarily, the cross momentum flux 〈uv〉 can only
be evaluated, if we assure that the particular observations of the two velocity
components were obtained from the same event, i.e. from the same tracer
particle passing the measurement volume. Therefore, to measure the Reynolds
shear stress we have to conduct a coincidence re-sampling, i.e. we have to apply
an appropriate17 coincidence window on the sampled data. Note, that for the
access of the Reynolds shear stress it is not inevitably necessary to use data,
which is equally distributed in time.

Secondly, we want to gain more insight to the structure of turbulence.
Therefore, we compute auto- and cross-correlation functions Rφψ (τ) and one-
dimensional power density spectra Sφφ (f) from the velocity and mass concen-
tration data. For this purpose, the discrete data has to be re-arranged in equal
time steps Mt, since the evaluation of Rφψ (τ) necessitates equally spaced data,
as does the evaluation of Sφφ (f), since it involves a discrete Fourier transform
either of the data itself or of its correlation function. Note, that both the auto-
correlations and the 1D power spectral densities do not require the coincidence
of u and v velocity observations.

Turbulence statistics always imply the calculation of averages, for example
the 0th to 3rd central moments of a given data series are its mean, variance,
skewness, and flatness. If the time sequence of the data is not equally spaced
with M t, then the averages of the whole data ensemble are not identically equal
to its time averages. The ensemble average of a series of N data points φi is
given by

〈φ〉 =
1

N

N∑

i=1

φi. (4.25)

Its time average over the time interval T on the contrary is defined as

〈φ〉t =
1

T

N∑

i=1

φi Mti, where T =
N∑

i=1

Mti. (4.26)

Replacing the time averages by ensemble averages in a data analysis usually
gives rise to a so-called biasing error. Obviously, if we assume the flow under
consideration to be volumetrically homogeneous seeded with tracer particles,
i.e. if we assume the volumetric density of tracer particles to be a constant,
then a purely random sampled data series will contain a comparatively larger
amount of high-velocity observations, since high speed fluid parcels are passing
the measurement volume faster than low speed parcels. Therefore, an ensemble
average of a time series can be biased toward higher velocity. A large number

17 More information on how to estimate the length of an appropriate coincidence time interval
for the specific flow under consideration, can be found for instance in TSI (1996).
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of papers during the 70s and 80s were concerned with the theoretical analy-
sis and correction of such biasing errors. Ruck (1990a) reported, that from
experimental examinations the biasing error is less severe than expected theo-
retically and amounts to approximately 2% to 4% at its maximum deviations.
For an equal interval time series with Mti =M t the time average of φi becomes

〈φ〉t =
1

T

N∑

i=1

φi Mti

=
Mt

N Mt

N∑

i=1

φi = 〈φ〉 .

That is, the time average and the ensemble average are the same in case of a
constant Mti. Thus, theoretically, an effective way to avoid any biasing error
would be to sample or re-sample the data with equal time steps from continuous
velocity information u (t). Since, practically, from a tracer-based measurement
technique velocity information can only be obtained at discrete instances in
time u (ti) depending on the presence of a tracer particle in the measurement
volume, the ‘particle-rate/velocity correlation’ is inherent to LDV measure-
ments. It can not a priori be omitted in the data collection, but only compen-
sated for during the post-processing of the data.

Albeit not necessary for the evaluation of the mass and momentum fluxes,
prior to any further data analysis all LDV-LIF measurement series were equal-
interval re-sampled to allow further analysis of the data. With a software writ-
ten for this task we first applied a low-pass filter on the still randomly distrib-
uted velocity data to reduce the noise due to erroneous LDV measurements,
which reduced the amount of raw data by usually less than 0.5%. After split-
ting the data of the two velocity channels, which were originally stored in a
sample & hold fashion, in order to reconstruct again the individual time histo-
ries of burst events for each channel, the separated data series of the velocity
channels then were re-sampled with equal time intervals.

For the data re-sampling, we have to determine a constant re-sampling in-
terval M t. The re-sampling frequency fres = 1/M t should be selected lower
than the average data rate fraw, at which the LDV data was obtained. It is
possible to use different fres for the re-sampling of the main and transverse
velocity components. This implies that the data of both channels then can
not be cross-correlated. Throughout this work we usually used a re-sampling
frequency fres = 100 Hz, the data rates fraw were monitored and, ranging up
to 1 kHz, always exceeded fres. Instead of applying different re-sampling fre-
quencies, both channels were usually re-sampled using the same time sequence
ti = t0 + i Mt (i.e. the same initial moment in time and the same time step).

For the implementation of the actual re-sampling algorithm we have to use a
certain interpolation or averaging scheme. Though also higher order interpola-
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tion schemes can be applied, for instance linear, cubic or spline interpolations,
0th order schemes guarantee the best representation of the randomly acquired
data, whereas higher order schemes are more speculative ones. Since we want
to examine the structures of turbulence, we should not apply an interpolation
scheme, which a priori needs an assumption about the temporal development
of the flow, i.e. about exactly the target of the examination. For example, if
we would know that a turbulent signal could be approximated by just a sine
function of a certain frequency and amplitude, we could easily employ a curve
fitting algorithm to reconstruct the flow and to find the best-fit-interpolated
data points. But turbulence is, at least for higher frequencies of 3D turbulence
that we want to interpolate, a process demanding a stochastic description,
which exactly is under investigation by this kind of measurements, i.e. not
known a priori.18

In general, interpolation schemes do not evaluate all available information
when down-sampling a data-set. When re-sampling with a frequency signifi-
cantly lower than the mean sampling frequency, then part of the information
content is lost depending on the order of interpolation, on the sampling fre-
quency variability, and on the re-sampling frequency ratio. This is also illus-
trated in Figure 4.10 for two 0th order interpolation schemes. So-called slotting
techniques are used to include all information of the available data within a
data-set re-sampled at a lower frequency. Therefore, slotting techniques always
smooth out high-frequent fluctuations and, thus, may dampen e.g. the noise,
but also the turbulent kinetic energy, they effectively operate as low-pass filters.
Basically using a rectangular window function of width Mt along the equally-
spaced time line ti = t0 + i Mt each measured data point is associated with its
appropriate time slot. All data points in each time slot are then arithmetically
averaged. Instead of a rectangular weighting function also advanced window
shapes can be applied (cf. also Section A). Other weighting functions especially
adapted to LDV measurements make use of the transit time or the inter-arrival
time. An introduction to various slotting techniques and their application to
LDV measurements and its analyses has been presented by Albrecht et al.
(2003).

Two 0th order interpolation schemes are visualized in Figure 4.10. The
best estimate is obtained from a nearest neighbor interpolation. As illustrated
in Figure 4.10(a), with this scheme we approximate the unknown value of a
turbulent process for a given instance in time by its the nearest observed value,

18 Imagine for instance a time series φ (t) of a random turbulent process with a constant
sampling interval Mt, whose fluctuation is characterized by its variance σφ. We could now
re-sample the data using the same time step Mt, but shift the whole time series by adding
an additional off-set of Mt/2. Obviously, if we would linearly interpolate the data, then
this would result in a dampening of the fluctuations and in a reduction of σφ, which is
not covered by the physical observations.



120 4. Pointwise Measurement Systems

t
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t t t t ti-1i-2 i i+1 i+2

(a) Nearest neighbor re-sampling

t

u(t)

t t t t ti-1i-2 i i+1 i+2

(b) Sample & hold re-sampling

Figure 4.10. The LDV-LIF system randomly acquires the velocity and concentration data
at discrete times, i.e. information is unevenly distributed in time. In order to avoid biasing
effects in the turbulence statistics and also to perform a Discrete Fourier Transform on the
time series, the data has to be re-sampled with equal time intervals Mt. (a) Using a nearest
neighbor algorithm minimizes the sum of the necessary time shifts tk − i Mt. - (b) The
sample & hold algorithm identifies the latest predecessor at a given time step, and thus
imitates a hardware re-sampling technique, which was realized by measurement devices in
the pre-computer era.

looking both backward and forward in time. On the contrary, with a commonly
used sample & hold interpolation we assign the youngest measured predecessor
to the unknown value at a given time, i.e. we are looking only backward in
time then (cf. Figure 4.10(b)). Using this method we can obtain estimates at
a particular time “on the fly” during the data acquisition or temporal analysis.
The sample & hold interpolation scheme thus imitates the hardware equal-
interval sampling technique (using so-called buffer devices to temporarily store
a signal), which was employed in the pre-computer era.

0th order re-sampling algorithms should preferably applied to measure-
ments with a low variability of their data rate Ṅ . Adrian & Yao (1987)
recommended a mean data rate of about 20-times the highest frequency in-
tended to be resolved in the power spectrum, if a sample & hold algorithm is
employed. Due to the 0th order interpolation of the “true” velocity signal a so-
called step noise will be introduced with the reconstructed signal that obscures
the high frequency part of the PSD estimate. Since compared to the sample &
hold algorithm with the nearest neighbor re-sampling the average width of the
time step is only half as wide, i.e. the re-sampling accuracy is twice as high, the
recommended data rate will be about 10-times the maximum PSD frequency.
Hence, the nearest neighbor reconstruction of the flow velocity will be the pre-
ferred interpolation scheme with respect to further evaluation of the data (see
Section 7 for the computation of auto-correlation functions and power spectral
estimates).

In order to cross-correlate the two velocity components (e.g. for the eval-
uation of the Reynolds shear stress or of the cross-correlation function), we
additionally applied a co-incidence window on the low-pass filtered data, prior
to conducting the equal-interval re-sampling.
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5.1 Shallow flow facility

In order to investigate the momentum and mass transport in various kinds
of shallow turbulent plane shear flow the ‘Karlsruhe shallow flow facility’ has
been established at the Institute for Hydromechanics, University of Karlsruhe.
The flexible and fully equipped research installation offers precise and efficient
measurements in a large-scale laboratory environment. Figure 5.1 gives a visual
impression of the shallow flow facility looking from the outflow against the flow
direction over the basin.

The shallow flow basin covers a total free-surface area of about 80 m2,
the basin has a width of 5.48 m and—due to the compact in- and outlet
constructions—a usable length of about 13.5 m. Water depths up to 25 cm can

Figure 5.1. A view of the shallow flow facility against the flow direction. During the prepa-
ration of PCA measurements two co-workers arranged the carrier beam for the dye injection.
In the foreground the 3D positioning system, carrying the LDV probe head and an ultrasonic
distance sensor, is visible. In the upper part of the basin the inflow, consisting of diffusor
trench and the flow conditioners, is located. In the background outside of the basin the
control platform and the control cabin are visible. To the left outside the basin part of the
LDV-LIF system can be found. (Photo by courtesy of H. Deutsch)
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be adjusted and maintained with about 0.5 mm accuracy. Much effort has been
made to obtain a plane and smooth bottom. The horizontal bottom of the basin
is plane with a standard deviation of σz = 0.7 mm and a maximum deviation of
±1.5 mm from the mean bottom level. The bottom slope is fixed horizontally
(S0 = 0)), and cannot be adjusted in order to obtain equilibrium shear flows for
different discharge rates. The polyurethane-elastomer coating of the concrete
bottom can be regarded nominally smooth, for the effective hydraulic roughness
an equivalent sand roughness of ks = 0.05 mm to ks = 0.1 mm has been
determined (cf. v. Carmer et al. (2000) for more detail). Figure 5.2 presents
a schematic sketch of the shallow flow basin.

The shallow water basin is operated in a closed circuit, i.e. the water supply
is independent from other test flumes in the hydraulics laboratory. Hence, pres-
sure variations that might be induced by the operation of neighboring flumes
have been omitted. Also external influences on the water quality could be
excluded, a closed-loop arrangement allows to control and stabilize the exper-
imental conditions with respect to fluid properties like temperature, turbidity,
pH value, or chemical compounds, which is a crucial pre-requisite for the LIF
and PCA measurements of mass concentrations of a minority species. In turn,
also the contamination of other test rigs due to tracer material, especially due
to fluorescent dye, is prevented. For a water depth of 3 cm (a typical value in
the framework of the present work) the fluid volume circulating in the shallow
flow facility is about 6 m3, about 60% of the fluid is stored in the pipe system,
and about 40% in the basin itself. Note that no additional fluid reservoir and no
constant-head tank is provided making the control of the flow a delicate issue.
The discharge is established by a 30 kW low-head radial pump ETA-R 250-300
provided by KSB. Its rotation speed is controlled by a frequency converter
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(Danfoss, VLT 3500 HVAC) allowing for a continuously variable regulation of
the discharge rate up to approximately 200 l/s. Since the frequency converter
is provided with a serial bus RS 485 interface, the flow rate can be controlled
remotely. For the examination of flow reversals (e.g. in tidal currents) the flow
direction in the conduit can be inverted by operating 4 butterfly valves.

In order to obtain homogeneous inflow conditions without any lateral vari-
ation of the mean flow Ua the water is fed into the upper diffusor trench of
the basin through a line of 4 multiport diffusors (cf. Figure 5.2). The discharge
in each diffusor can be controlled by a gate valve, the openings of its mul-
tiple ports can be further adjusted by sheet metal sliders. Filter mat layers
are used to completely equalize the outflow from the diffusor trench into the
basin. For final conditioning of the flow multiple screens are employed as flow
straighteners and initial turbulence generators, floating boards damp away the
high-frequency surface waves introduced by the screens. After passing the basin
the water is drained in the lower diffusor trench. Apart from the flow straight-
eners the outflow configuration is identical to the inflow configuration which
allows to reverse the flow direction without otherwise significantly changing
the flow field.

In the 16 m long straight part of the 200 mm return water conduit a
magnetic-inductive discharge meter (Fischer & Porter, Mag XM) has been
installed, which is supplied with a serial bus RS 485 interface. Hence, the flow
rate can be obtained continuously with an accuracy of 0.5%.

A fully-automated three-axial traversing system (cf. Figure 5.2) which spans
the full width of the basin allows to position various measurement probe heads
at arbitrary places in the shallow flow basin. Video observations and measure-
ments can also be conducted ‘on–the–fly’. The repeat accuracy of the position-
ing system is below 1 mm in the horizontal directions, and about 0.03 mm in the
vertical. The maximum positioning speed is 1.0 m/s, 0.5 m/s, and 0.1 m/s in
the longitudinal, spanwise and vertical direction, respectively. Due to its com-
pact self-supported construction the positioning system can be parked over the
front or rear diffusor trench to provide a free field of observation over the full
basin area. Communication with and control by the facility control computer
was established using a hand-shake procedure via a serial RS 232 interface. The
positioning system was constructed and assembled by Drescher Systemtechnik
using stepper motors and controllers provided by Parker/Hannifin and linear
positioning units provided by Isel.

In addition, the shallow flow facility is equipped with 2 PT 100 temper-
ature sensors to survey the water- and air temperature with an accuracy of
0.1◦C. Continuous measurements of the water level are obtained from ultra-
sonic distance sensors (Honeywell, 945 F4Y) with a repeat accuracy of 0.3 mm.
2 probes are installed in small external gauge tanks connected to the bottom of
the basin at different longitudinal positions in order to observe the long-term
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water level development. Another probe is mounted on the device platform
of the positioning system in order to obtain the local water level at the mea-
surement position. Both the temperature and distance sensors are connected
to an A/D data acquisition card that is read out by the control software. A
12-channel peristaltic pump (Ismatec, IPC-12) is employed for the metered in-
jection of dye tracer solution (for LIF, PCA, and visualization) into the flow at
a fixed or variable rate of 0.002 ml/min to 44 ml/min with low pulsation. The
dye can be introduced at arbitrary locations with negligible disturbance of the
flow using thin tubes (diameter 1.0 mm) fixed to a self-supported aluminium
carrier beam.

The communication of the facility control PC with the LDV-LIF measure-
ment system is realized with a hand-shake protocol using a net-work connection
with the LDV-LIF control PC. Thus, a sequence of data points can be measured
as quick as possible. This is important especially for LIF measurements, as the
duration of the fluorophor injection is limited due to increasing background
concentration of the fluorophor in the flow.

The shallow flow facility including all the above mentioned equipment is
supervised and controlled using a PC-based software FLAMES / STUMTRA.
This software supports the precise calibration of the basin and its technical in-
stallations, and enables the signal acquisition, conversation, and data storage.
It allows to prepare and to conduct extended measurement series. The execu-
tion of measurement series is fully automated, all requested operational data
and experimental conditions are preprocessed and stored in reports. Hence,
experimental investigations can be undertaken with best precision, efficiency,
and reproductivity. Though the design and development of the software under
LabViewr was dedicated to this facility, it has also been migrated to another
test flume. More details on the use and programming of the control software
can be found in Dietz et al. (2002) as well as additional information about
properties and calibration procedures of the technical equipment.

Table 5.1 summarizes the main features of the basin and its associated
technical equipment. A visual impression of the Karlsruhe shallow flow facility
is given in an introductory video-presentation by v. Carmer & Deutsch
(2001, 2002).

5.2 Measurement program

In the framework of the present research project quantitative observations have
been conducted using different measurement techniques in order to access the
momentum and mass transport in shallow turbulent wakes both at the small
and large temporal and spatial flow scales.
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Table 5.1. The shallow flow facility—shallow flow basin, system control, and measurement
equipment

shallow flow basin

basin
total length 14.65 m, width 5.48 m,
water depth up to 0.25 m

bottom
length 13.45 m, horizontal (S0 = 0), plane (σz = 0.7 mm),
smooth (ks = 0.05 mm)

inflow 4 multiport diffusors, filter mats, screens, floating boards

water conduit
closed–loop, total volume approx. 6 m3 under working
conditions

main pump

radial pump (KSB, ETA-R 250-300), 30 kW, discharge in
conduit continuously variable up to 200 l/s,
frequency converter (Danfoss, VLT 3500 HVAC), RS 485
interface

primary measurement techniques

LDV-LIF
2 component LDV for horizontal flow velocity synchronized
with LIF for mass concentration, hand-shake via
windows-network (cf. Chapter 4)

PIV adapted to obtain surface velocity fields (cf. Section 3.1)

PCA
depth-averaged distribution of mass concentration (cf.
Section 3.2)

supplementary measurement equipment

flow meter
magnetic–inductive (Fischer & Porter, Mag XM), RS 485
interface

positioning system

3D positioning system from Drescher Systemtechnik
(controllers and stepper motors by Parker/Hannifin, linear
units by Isel), self-supported (spanning full width of basin),
accuracy of position: horizontally 1.0 mm, vertically
0.03 mm, fully automated control, RS 232 interface

temperature sensor
2 PT100 sensors for water and air temperature, analog out
to A/D card

distance sensor

3 ultrasonic distance sensors (Honeywell, 945 F4Y), repeat
accuracy 0.3 mm, analog out to A/D card, 2 fixed probes
installed in gauge tanks, 1 flying probe mounted on
measurement platform of positioning system

dye tracer injection

peristaltic pump (Ismatec, IPC-12), 12 channels, flow rate
per channel 0.002 up to 44 ml/min, RS 232 interface,
injection into flow with 1 mm diameter tubes fixed to
self-supported carrier beam

PC for system control

personal computer, Intel processor P-II 200 MHz, 256 MB RAM, hard disk, data
acquisition card (National Instruments, PCI-1200), multi-serial RS 232 interface, ethernet
card

OS Windows NT 4.0
software Flames/Stumtra, LabView 5
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5.2.1 Conducted measurement series

For 10 different flow configurations detailed experimental investigations of a
shallow turbulent flow in the wake of a single circular cylinder have been con-
ducted. The smooth circular curvature, made of plastics or sheet metal provid-
ing a smooth surface, was attached perpendicularly to the bottom of the basin,
its diameter varied as 63 mm, 125 mm, 250 mm, 500 mm, or 1120 mm. The
ambient—i.e. undisturbed—plane shear flow was characterized by a bulk mean
flow velocity Ua of 0.09 m/s up to 0.16 m/s, and by a water depth h of 17 mm
up to 80 mm. The friction coefficient cf was calculated to fall between 5.6·10−3

and 9.4 · 10−3, using an equivalent sand roughness ks = 0.05 mm for the bot-
tom roughness (cf. Section 5.3.1). The Froude number Fr = Ua/

√
gh was kept

below 0.33 in order to suppress surface waves in the base flow. The bulk mean
Reynolds number Reh = Ua h/ν ranged from 1,500 to 11,300. Hence, the base
flow always was a fully turbulent boundary layer flow, since Reh significantly
exceeded the critical value of about 500 for the laminar–turbulent transition.

In order to link the geometry of the obstacle and the base flow, the aspect ra-
tio of cylinder diameter and water depth, i.e. the shallowness of the flow, could
be given as 1.7 ≤ D/h ≤ 66. The cylinder Reynolds number ReD = UaD/ν
ranged from 9,000 up to 146,000. For the stability parameter S = cf D/h (cf.
Section 2.3) a maximum value of 0.55 was obtained. Table 5.2 summarizes
the characteristic parameters of the different flow configurations. A wake flow
stability classification of the conducted experiments will be presented in Sec-
tion 5.2.2, Figure 5.5 illustrates the stability of the conducted measurement
series together with data reported by Chen & Jirka (1995).

Besides qualitative flow visualization one or more of the non-intrusive opti-
cal measurement techniques of combined laser Doppler velocimetry and laser
induced fluorescence (LDV-LIF), particle image velocimetry (PIV), and planar
concentration analysis (PCA) have been applied. For the flow visualizations the
following food and cosmetics colorants (BASF, Sicovitr) were used (BASF,
1996, 1997):

Amaranth 85 E 123 C.I. 16185, Acid Red 27
Indigotine 85 E 132 C.I. 73015, Acid Blue 74
Quinoline Yellow 70 E 104C.I. 47005, Acid Yellow 3

Usually red and blue dye solutions were introduced at mid-depth into the right
and left cylinder boundary layers, respectively. From overhead still and video
cameras images and image sequences were obtained for real-time assessment
of the flow, and stored for later analysis. Example photographs of the visu-
alization arrangement are presented in Figure 5.3 for different shallow wake
stability classes.

Point-wise measurements of the horizontal flow components and of a mass
concentration have been obtained with high spatiotemporal resolution using a
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Table 5.2. Summary of hydraulic conditions of shallow wake flow experiments behind a
single circular cylinder employing various measurement techniques.
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combined 2D LDV-LIF measurement system (cf. Chapter 4). For the purpose
of LIF measurements a fluorescent dye solution was introduced approximately
iso-kinetically into the right cylinder boundary layer at mid-depth. For each
experimental run a series of point-measurements were taken at various loca-
tions along the wake center line. The measurement volume was adjusted at
each point to about two thirds of the water depth. The measurement duration
in general was 120 s, selected points were observed for 600 s. Before each mea-
surement a reference measurement has been conducted for 30 s well outside the
wake in the ambient shear flow to obtain the background mass concentration
in the ambient flow. The total duration of a measurement run was limited to
90 min to 120 min in order to restrict the background concentration of the
fluorophor. Thus, a LDV-LIF measurement run could contain about 12 to 16
measurement points. Thereafter, the shallow flow basin had to be emptied,
cleaned and refilled—a procedure that took a full day. For the LIF measure-
ments it is crucial to know the exciting light intensity in the measurement
volume, and to keep it constant during a full measurement run. This required
to pre-warm the couplers, and to carefully feed the laser light into the optical
fibres—again a time-consuming procedure of 6 hours pre-warming and at best
2 hours adjusting the LDV-LIF. Contrarily, LDV measurements without cou-
pled LIF were much easier to conduct, since both background concentration
and light stabilization were of no relevance. Nevertheless, despite the highly
automated measurement sequence LDV measurements always need special care
and attention.

In order to observe the horizontal wake flow field in its spatial context, an
especially-adapted surface PIV technique (cf. Section 3.1) has been employed.
Here, small beads floating at the water surface were laterally homogeneously
distributed and advected through the field of observation. 300 frames could be
obtained at 7 Hz for about 45 s with a single measurement run from a field
of observation of 1.2 m x 1.4 m. Therefore, each measurement run had to be
repeated some times, then the field of observation was moved downstream to
the next measurement position.

Depth-averaged fields of mass concentration have been obtained employing
a special PCA measurement technique (cf. Section 3.2). A food colorant so-
lution was introduced into one or both cylinder boundary layers or into the
wake of the cylinder at mid-depth. The field of observation of 1.6 m x 1.2 m
was centered to the wake flow. For an individual measurement run images were
recorded with a digital video camera at a frame rate of 25 Hz for more than
120 s, and later digitized and analyzed. Since changing the camera position
to a new field of observation required to re-adjust the illumination and to
re-calibrate the PCA algorithms, the optical arrangement was kept in place.
Instead, the obstacle was moved upstream in order to obtain complete mea-
surement series along the wake centerline.
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(a) VS - vortex street-like
wake

(b) UB - unsteady bubble
wake

(c) SB - steady bubble wake

Figure 5.3. Flow visualizations, observed with an overhead camera, of typical flow configu-
rations illustrate the three stability classes VS, UB, and SB in Figures (a), (b), and (c). The
stability numbers were S = 0.13, 0.23, and 0.55, respectively at water depths h = 30 mm,
20 mm, and 11 mm. The bulk mean Reynolds numbers were Reh = 3100, 1600, and 640,
respectively, and the cylinder Reynolds numbers were ReD = 44, 000, 35, 000, and 25, 000.

Simultaneous data sets (u, v, c) were obtained directly from the combined
LDV-LIF measurements (cf. Section 4.3) allowing to instantaneously correlate
the horizontal flow velocity and mass, ui c = f (t). Also the planar measure-
ments of surface velocity and depth-averaged concentration have been cor-
related after a phase–resolved averaging procedure to obtain the large-scale
coherent mass fluxes {ui} {c} = f (φ). More detail will be given in Part III of
this work.

5.2.2 Classification of experimental observations

According to Chen & Jirka (1995) circular cylinder wakes in shallow turbu-
lent plane shear flow can be subdivided into three flow classes regarding their
overall stability behavior. In Section 2.3 the characteristic flow phenomena
have been introduced, and the Stability number, given by S = cf

D
h , has been

identified as a characteristic parameter to classify the wake flow. The following
delimitations were recommended by Chen & Jirka (1995) in order to classify
shallow wake flows.

S < 0.2 vortex street-like wake (VS)
0.2 < S < 0.5 unsteady bubble wake (UB)

S > 0.5 steady bubble wake (SB)
The different stability classes in shallow wake flows, VS, UB, and SB, are

illustrated in Figure 5.3 for typical experimental flow conditions. Here, the
stability numbers were S = 0.13, 0.23, and 0.55, respectively. The bulk mean
Reynolds numbers were Reh = 3100, 1600, and 640, respectively, and the
cylinder Reynolds numbers were ReD = 44, 000, 35, 000, and 25, 000. The dye
for the flow visualization was continuously introduced in flow direction into
the upstream left and right cylinder boundary layers.
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The delimitating critical values Sca ≈ 0.2 and Scc ≈ 0.5 were proposed to be
invariant to the ambient Reynolds number Reh = Ua 4h/ν for fully turbulent
ambient shear flow, i.e. in the high Reynolds number regime of Reh ≥ 6, 000.
The critical values should not be regarded as stringent, but should be allowed
to vary within ±10%. The error bounds in the critical values are said to be
mainly due to uncertainties in the estimation of the bottom friction coefficient
cf .

In general, the skin friction coefficient that is related to the Darcy-Weisbach
friction coefficient by cf = λ/4 depends on the bulk ambient Reynolds num-
ber and on the relative roughness, ie. cf = f (Reh, ks/4h) (cf. Section 5.3.1).
The functional dependance of the stability parameter S = cf D/h then be-
comes S = f (ks/4h, Reh, ReD) including the cylinder Reynolds number
ReD = UaD/ν. Chen & Jirka (1995) used the approximation of a hydrauli-
cally smooth bottom, for which cf = f (Reh) only, and thus S = f (Reh, ReD).
If S would be Reh-invariant, then it would only depend on ReD. This is
applicable for unbounded wake flows, but it clearly contradicts the stability
concept for shallow wakes that are based on the spanwise boundedness of
the flow with depth h and on the vertical shear due the a bottom rough-
ness with cf . S = f (ReD) would require that D/h should depend on Reh
reciprocally compared to cf . This is obviously wrong, since D/h ∝ Re−1

h and

cf ∝
[
lg
(
Re−0.9

h

)]−2
.

Hence, for shallow flow conditions the influence of the bulk ambient
Reynolds number Reh should be retained. Gray-scale iso-contours of S de-
pending on ReD and Reh are represented in Figure 5.4 obtained from own
flow visualizations (full symbols), and from data presented by Chen & Jirka
(1995) (outlined symbols). The observed wake flows are classified into VS, UB,
or SB wake stability types denoted by n, l, and s, respectively. Bold full lines
indicate critical values of S for transitions between stability classes. Thin lines
denote iso-contours of S calculated for Reh ≤ 30, 000 and for ReD ≤ 450, 000
as

S = cf
D

h
=
λ

4
4
ReD
Reh

, (5.1)

where ReD = UaD/ν is the cylinder Reynolds number, and is Reh = Ua 4h/ν
the bulk ambient Reynolds number based on the hydraulic flow diameter.
Here, for the Darcy-Weisbach friction coefficient the explicit approximation
of Swamee & Jain (1976) for the Colebrook-White equation is used in the
limit of hydraulically smooth conditions, i.e.

cf =
λ

4
=




0.25

lg

(
5.74

Re 0.9
h

)




2

. (5.2)
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Figure 5.4. The shallow wake stability parameter S is presented in the Reh–ReD space.
n, l, and s denote own laboratory wake flows classified as VS, UB, or SB, respectively. �,
◦, and 4 indicate data of Chen & Jirka (1995) (re-computed employing improved values
of cf ). Iso-contours of S, observed experimentally, are represented as gray-scale information,
thick full lines indicate the transitions VS–UB and UB–SB. Thin lines show iso-contours of
the stability parameter as calculated from (5.1) using (5.2). For S → 0, i.e. for unbounded
wakes, the stability parameter is invariant of Reh. For increasing S its dependance on Reh
becomes significant, and should not be neglected.

To exemplify the dependance of S = f (Reh, ReD), for a cylinder Reynolds
number ReD = 1.5 · 105 a vortex street-like wake will be encountered for
Reh = 2.2 · 104, an unsteady bubble wake for Reh = 1.5 · 104, or a steady
bubble wake for Reh = 0.7 · 104. Although for S → 0, i.e. for unbounded
wake flows, the stability parameter is invariant of Reh, for the general case
of S > 0 its dependance on Reh becomes significant. S = f (Reh) should not
be neglected, especially not for higher values of D/h indicating a pronounced
shallowness of the wake flow.

Additionally, the bottom roughness ks/4h should be represented in the fric-
tion coefficient cf , as it will become relevant for small water depths. Therefore,
the friction coefficients and, consequently, the stability parameters of the data
from Chen & Jirka (1995) have been re-calculated using an equivalent sand
roughness of ks = 0.1 mm. For the predominant water depths of h . 30 mm
this resulted in an increase of cf and S of approximately 10%. The corrected
data is depicted in Figure 5.5 together with own measurements. Of course, the
error bounds of ±10% in the delimitation of the flow classes by Sca and Scc re-
main. But they should not be ascribed to uncertainties in the evaluation of cf .
More likely, they can be associated with the Reh-variance of S (mainly for the
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Figure 5.5. Laboratory shallow wake flows have been organized in three stability classes
(VS) vortex street-like wake, (UB) unsteady bubble wake, and (SB) steady bubble wake
denoted by n, l, and s, respectively. The data of Chen & Jirka (1995) (outlined sym-
bols) has been re-calculated using improved friction coefficients cf . Own measurements are
indicated by filled symbols. Delimitations and error bounds of the shallow wake stability
parameter S, as proposed by Chen & Jirka (1995), are included. The constant S-values
for the transitions between the stability classes have to be re-adjusted and have to be allowed
to vary with Reh.

transition UB–SB), and to uncertainties in the flow classification (especially
for the transition VS–UB).

5.3 Characterization of base flow as plane turbulent shear flow

The objective of this work is to clarify the effects of a horizontal shear—
introduced by a large cylindrical obstacle—on a shallow turbulent base flow,
and to examine the genesis and fate of large-scale convective instabilities in
shallow wake flows. In the following section we will give a short description of
the flow characteristics of the ambient base flow, a more thorough discussion
has been presented by v. Carmer et al. (2000).

Ideally, the base flow will be a plane turbulent free-surface equilibrium shear
flow. Then, the vertical gradients of the flow velocity components ∂ui/∂z, rang-
ing from the bottom along the water column up to the free surface, reflect a
shear stress distribution with its maximum at the bottom that will vertically
decrease toward zero within the bottom boundary layer. A plane flow is char-
acterized by horizontally homogeneous flow fields, i.e. the flow is invariant to
lateral and longitudinal changes of position. This in particular will require the
absence of any secondary motions of the flow. Since in the present experimental
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set-up the flow can be characterized as a shallow straight rectangular open-
channel flow, secondary flow due to a compact cross-sectional bathymetry as
well as due to curvature of the bathymetry in the main flow direction can be
excluded. Because of the high bulk ambient Reynolds number Rea = Uah/ν of
the flow, viscous effects will be limited to a thin layer—the viscous sub-layer
of the boundary layer—close to the bottom. In a ‘near-equilibrium’ shear flow
the vertical distribution of the flow quantities still displays self-similarity in
the longitudinal direction.

5.3.1 Horizontal flow field

Transverse velocity distribution. The presupposition of a plane base flow
requires a uniform transverse distribution of the time-mean longitudinal veloc-
ity component, i.e. 〈u〉 6= f(y). This has been ascertained by a proper discharge
adjustment of the individual multi-port diffusors, and by a selection of flow
straighteners and turbulence generators in the inflow of the shallow flow facil-
ity. With LDV measurements it has been verified for various discharges that
the mean ambient flow as well as the turbulence intensities did not depend on
the lateral and longitudinal measurement position. Also flow visualizations did
not indicate any undesirable secondary motions of the base flow, as is visible
for instance from the straight courses of the multiple dye plumes in Figure 5.9.

Longitudinal velocity distribution. Using the shallow water assumptions
and the boundary layer approximation the 3D Reynolds-averaged Navier-
Stokes equations can be simplified to result in 1D equations of motion for
continuity,

dŪ

dx
+
Ū

h

dh

dx
= 0 , (5.3a)

and for momentum,

Ū
dŪ

dx
= −gdh

dx
+ g sinϑ− cf

Ū2

2h
, (5.3b)

where Ū the depth- and time-averaged main flow component, and sinϑ the bed
slope, S0 = tanϑ ≈ sinϑ. Inserting (5.3a) into (5.3b) results in the well-known
expression for the 1D calculation of the water surface level in open-channel
flow,

dh

dx
=
g sinϑ− cf

Ū2

2h

g − Ū2

h

=
S0 − Sf
1 − Fr2

. (5.4)

As is evident from Equation (5.4), a longitudinally uniform flow can not be
established in a viscous open-channel flow over a horizontal bottom, i.e. ϑ = 0,
without the driving force of gravity. Then, the loss of momentum due to bottom
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friction can only be replenished from an existing longitudinal pressure gradient
dh
dx . For Froude numbers decreasing toward 0 the changes in h diminish, and the
flow tends to uniformity. For the experimental program of the present study,
the Froude number has been limited to Fr < 0.3.

The effect of bottom friction is usually described by the bed shear stress τb
that is related to the bed friction velocity U? and to a bed friction coefficient
cf as

τb
ρ

≡ U 2
? ≡ cf

Ū2

2
. (5.5)

The bed friction coefficient cf is related by cf = λ/4 to the Darcy-
Weisbach friction coefficient λ that is used to describe the influence of the
surface roughness in pipe and channel flows. λ represents the effects of both
‘external’ surface friction and of ‘internal’ viscous friction. It thus, firstly de-
pends on the relative height of the roughness elements ks/Dhy, where ks is
the equivalent Nikuradse sand roughness, and Dhy = 4Rhy = 4A/Phy is the
hydraulic diameter. Secondly, λ is dependent on the bulk Reynolds number
ReDhy = ŪDhy/ν. Whereas for ‘hydraulically rough’ flows λ becomes indepen-
dent of ReDhy , i.e. λ = f (ks/Dhy) only, and for ‘hydraulically smooth’ flows
λ = f

(
ReDhy

)
only, the general case of λ = f

(
ks/Dhy, ReDhy

)
can be solved

implicitly by the Colebrook-White equation. Swamee & Jain (1976) pre-
sented an explicit approximation of the Colebrook-White equation that
provides reasonable accuracy1,

λ = 0.25

[
lg

(
ks/Dhy

3.71
+

5.74

Re 0.9
Dhy

)]−2

. (5.6)

Although the bottom of the shallow flow facility has been furnished with
a smooth coating, it is not hydraulically smooth. For different steady low-Fr
flow conditions the water depth h has been measured at multiple downstream
positions (v. Carmer et al., 2000). The measured water surface elevations
were also predicted with good agreement using Equations (5.4) and (5.6), which
have been calibrated by adjusting ks. Thus, from a best-fit the equivalent sand
roughness of the bottom has been obtained as ks = 0.05 mm to 0.1 mm.

5.3.2 Vertical flow field

In uniform plane boundary layer flow the flow fields are horizontally homoge-
neous, i.e. they do not change in the horizontal directions. Nevertheless, since
1 The accuracy of Equation (5.6) compared to the implicit Colebrook-White equation

has been evaluated by Swamee & Jain (1976) to fall within 1% over a wide range of
ks/Dhy and ReDhy

. Since from the range of ks/Dhy and ReDhy
occurring in the present

study this deviation was well within the 1% error bound, λ has been determined here
from (5.6) instead of iteratively solving the Colebrook-White equation.
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the shallow flow is confined between the solid bottom (no-slip condition) and
the free surface, rapid changes and steep gradients occur in the vertical direc-
tion. Speaking of a uniform channel flow implies that vertical gradients exist,
but do not depend on the horizontal position.

Hence, a fully developed open-channel flow should have established at the
beginning of the test section of the shallow flow facility, i.e. the bottom-induced
shear layer should have fully developed. Depending on the inflow conditions
the length of the boundary layer development can range up to Lx/h = 200.
For smooth open-channel flow Kirkgöz & Ardiçlioğlu (1997) validated an
estimate for the developing distance as Lx/h = 76 − 10−4 Reh

Frh
.

Time-mean vertical velocity distribution. In order to describe the ver-
tical distribution of the time-averaged main velocity component U (z) in a
fully developed turbulent open-channel flow, usually a logarithmic law is em-
ployed analogously to boundary layer theory. Within the free boundary layer—
for z/h between 0.15 and 0.6 approximately—the log-law provides a sound
analytical solution for the vertical turbulent momentum exchange (cf. e.g.
Schlichting & Gersten, 1997). Closer to the bottom also viscous effects
become important, thus the log-law has to be modified by a damping function
(e.g. van Driest), and finally has to be replaced by a linear relation U (z) in
the viscous sub-layer immediately above the smooth bottom. When the free
surface is approached (z/h > 0.6) the main velocity component U addition-
ally increases due to the damping of the vertical component. Hence, an extra
term—a wake function—is added to the log-law, usually employing a solution
given by Coles (1956). Then, for a wide range of distances from the bottom
(approximately 0.15 < z/h < 0.9) the vertical distribution of the average main
flow velocity over a smooth bottom is well described by a log-wake law given
as

U

U?
=

1

κ
ln

z

z?
+Bz +

2Π

κ
sin2

(π
2

z

h

)
, (5.7)

where U? shear stress velocity given by (5.5),
z? viscous length, z? = ν/U?,
κ v. Kármán constant, here κ = 0.412,
Bz constant of integration,

here Bz = 5.29 for smooth bottom,
Π Coles’ wake parameter, Π = f (Reh).

More detail on the log-wake law in open-channel flow is provided e.g. by
Nezu & Rodi (1986); Nezu & Nakagawa (1993). Some recommendations
for an effective prediction of U(z) and U? from velocity measurements in open-
channel flows are provided by v. Carmer (1998).

Figure 5.6 exemplifies the vertical distribution U(z) for a shallow base flow
characterized as a plane near-equilibrium shear flow with Reh = 12, 075 and
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Figure 5.6. The vertical distribution of the time-averaged main velocity component has
been obtained from LDV measurements at two downstream positions (� and ∆ symbols) in
a longitudinally slightly non-uniform base flow with Reh = 12, 075 and Reτ = 645 (series
000419). The data is compared to a DNS of a turbulent channel flow at Reh = 10, 935 and
Reτ = 584 (+ symbols, data provided by Moser et al. (1999)), and to a prediction using
the log-wake law (5.7) with Bz = 5.5 and Π = 0.2.

Reτ = U? h/ν = 645. The velocity data (denoted by � and ∆ symbols) have
been obtained from LDV measurements at two different downstream positions
of the gradually varying flow. The reader is referred to v. Carmer et al.
(2000) for more information about the shortcomings of the employed LDV
arrangement in order to obtain u (z) measurements with an appropriate spatial
resolution. The measurements at both locations agree well with each other
and with results obtained by Moser et al. (1999) from a DNS of a smooth
channel flow with Reh = 10, 935 and Reτ = 584 (denoted by + symbols).
This indicates that the slight non-uniformity of the base flow has hardly any
effect on U(z), and may also not affect a shallow wake flow and its 2D LCS.
For the prediction of U(z) from the log-wake law (5.7) (dashed line) Bz =
5.5 was employed together with a wake parameter Π = 0.2, though earlier
measurements (Nezu & Rodi, 1986; v. Carmer, 1998) suggested a value of
Π = 0 for uniform open-channel flows with Reh < 5·104. Also the prediction by
the log-wake law correlates with the data demonstrating that U? is computed
correctly from Equations (5.5) and (5.6), and thus verifying the calibration of
the equivalent sand roughness ks ' 0.1 mm.2

Vertical distribution of turbulent velocity fluctuation. The mean tur-
bulence field is commonly expressed in terms of a turbulence intensity TI that
is defined by the standard deviation of the turbulent velocity fluctuations

2 For the present flow conditions the sedimentological Reynolds number Re? = U? ks/ν =
ks/z? = k+

s , characterizing the frictional effect of the bottom roughness, is of order O (1).
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σui =
〈
u′i

2
〉1/2

normalized by its ensemble-mean value, i.e. TIui = σui/Ui.
In Section 7.1.4 downstream distributions of the horizontal turbulence inten-
sities will be given along the centerline of various wake flows as well as for the
corresponding base flows.

In order to characterize the mean vertical distribution of the turbulent
velocity fluctuations in a plane boundary layer flow, the standard deviation is
non-dimensionalized with the shear stress velocity U?. In the free shear region
(approximately for 0.15 ≤ z/h ≤ 0.6) of a smooth turbulent plane open-
channel flow the standard deviations of the velocity components σui can be
described by a semi-empirical exponential decay equation, which can also be
related to the components of the turbulence intensity via (5.5),

σui
U?

=
TIui√
cf/2

= Dui e
ck z/h . (5.8)

The empirical constants are Du = 2.30, Dv = 1.63, Dw = 1.27, and ck = −1.0
according to Nezu & Rodi (1986); Nezu & Nakagawa (1993).

The progression of the normalized horizontal velocity standard deviations
σu/U? and σv/U? in the vertical direction is depicted in Figure 5.7 for base
flow conditions already reported for Figure 5.6. The data obtained from LDV
measurements is compared to DNS results of Moser et al. (1999) and to
predictions using Equation (5.8). The measured turbulence distributions at
both downstream positions coincide in the limits of the measurement accuracy.
They also agree well with the smooth channel simulation of Moser et al.
(1999). The prediction using (5.8) seems to be applicable in the free shear
region, but also well into the free surface region, i.e. for 0.15 . z/h . 0.9.

Hence, from the vertical turbulence intensity distribution as well as from the
vertical distribution of the mean horizontal velocity components we conclude
that the base flow can be described as a fully developed turbulent plane open-
channel flow using the characteristics of equilibrium shear flows. The turbulent
open-channel flow can be regarded as fully developed at the beginning of the
test section after x/h = 75 in agreement with the smooth channel observation
of Kirkgöz & Ardiçlioğlu (1997).

5.3.3 Spectral analysis in frequency domain

Turbulent flow fields show fluctuations of a wide range of frequencies, resp.
wave lengths, that can be understood as eddies of various sizes. In a plane
boundary layer the primary transverse ‘Tollmien-Schlichting instabilities’ are
subject to secondary 3D instabilities in the laminar–turbulent transition, re-
sulting in stretched ‘Λ–structures’. As these decay, from their remains ‘tur-
bulent spots’ develop, which occur more randomly, and grow rapidly in space
and time, until finally a self-preserving turbulent state is reached. Of course,
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Figure 5.7. The vertical distribution of the standard deviations of the horizontal velocity
components is normalized by the bottom shear velocity U?. Standard deviations of main
and transverse flow components, σu/U? and σv/U?, are denoted by � and ∆ symbols, and
by n and s symbols, respectively. Dashed lines indicate corresponding predictions using
Equation (5.8). See also caption of Figure 5.6.

also in a fully turbulent boundary layer structures exist, e.g. spatially or-
ganized in longitudinal ‘streaks’ and temporarily in ‘burst cycles’. (See e.g.
Schlichting & Gersten, 1997; Oertel Jr. & Delfs, 1996)

Shear-induced mechanisms of vortex stretching are the main cause for the
decay of turbulent structures in the full range of wave lengths. The energetic
large vortical structures may be stretched along the gradient ∂U/∂x of the
mean flow field. Thus, large eddies give rise to permanent anisotropy of the
turbulence at low wave numbers. As the large eddies locally introduce shear
stresses due to local velocity gradients, further vortex stretching and generation
of smaller vortices occur. Such randomly occurring small-scale shear stresses
of non-permanent character of course lead to anisotropy of the instantaneous
turbulence field, but on average the random distribution results in isotropic
turbulence in the higher wave number range.

As will be discussed later in Section 6.2, energy spectral density (ESD)
estimates characterize the distribution of turbulent kinetic energy along the
wave number range. In the inertial subrange of wave numbers, being a part
of the universal equilibrium range of locally isotropic turbulence, the ESD
distribution follows a -5/3 power law (cf. Equation (6.26)). Also the 1D ESD of
the horizontal velocity components of the base flow—a uniform turbulent open-
channel flow—display a distinct inertial subrange of 3D isotropic turbulence,
i.e. identical distribution of Suu and Svv decaying to the power of -5/3. The
ESD estimates shown in Figure 5.8(a)—computed from LDV data obtained at
a depth z/h = 0.68 in the same flow conditions as described for Figure 5.6—
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suggest local isotropy of an inertial subrange of homogeneous turbulence for
frequencies f ≥ 5 Hz.3 However, in the lower frequency range the 1D ESD
estimates reveal the characteristic anisotropy, for f→ 0 the ESD estimates for
both components differ significantly.

Also in the auto-correlation coefficients of the horizontal velocity compo-
nents, ruu (τ) and rvv (τ) (cf. Equations (6.5) and (6.46)), the large-scale turbu-
lence anisotropy is present, as illustrated in Figure 5.8(b). Integral time scales
TI can be computed from rφφ of the longitudinal and transverse components
(cf. Equation (6.45)). For the velocity data presented in Figure 5.8 the inte-
gral time scales are TI,u = 0.204 s and TI,v = 0.034 s, i.e. TI,v ≈ 1/6 TI,u,
which corresponds to the 1D ESD values in the low-frequency range.4 Hence,
concerning the large-scale anisotropy of the turbulent free-surface shear layer
flow, the ESD estimates are consistent with the auto-correlation coefficients
and the integral length scales.

5.3.4 Mass transfer and mixing

The spreading of a mass tracer in a plane shear layer flow can be used to
check the existence of a nearly uniform turbulent open-channel flow. Figure 5.9
illustrates both the uniformity of the base flow without any secondary currents.
Here, the flow is characterized by an average depth h = 17.5 mm, a bulk main
velocity of Ūa = 8.3 cm/s, a friction coefficient λ = 0.039, and bulk Reynolds
and Froude numbers Reh = 1, 450 and Fr = 0.2. A tracer dye was continuously
injected iso-kinetically from 5 point sources at mid-depth. The spacing of the
grid painted on the bottom was 20 cm. The video camera, supplied with a
wide-angle lens, was oriented vertically downwards.

In order to characterize the lateral turbulent exchange of a passive conser-
vative tracer plume introduced from a continuous point source into a shallow
uniform open-channel flow, according to Fischer et al. (1979) the transverse
turbulent diffusivity Dt,y can be estimated by

Dt,y

U? h
= 0.15 ± 50% . (5.9a)

Rutherford (1994) summarized the results from a number of studies, and
concluded a lower-bound estimate

Dt,y

U? h
= 0.13 with 0.10 <

Dt,y

U? h
< 0.26 . (5.9b)

3 The Kolmogorov micro length scale of turbulence, here, can be estimated to `η ≈ 0.28 mm
using the relation (6.60b), together with a macro length `0 ≈ h, and k predicted from
σ2
u using (5.8). Employing Taylor’s frozen-turbulence hypothesis the corresponding micro

time scale becomes τη ≈ 1.12 ms.
4 For kw → 0 the ESD is related to the integral scale as `I,i = πSii(0)

2 〈u′

i
2〉 .
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Figure 5.9. The top-view
on a shallow base flow (h =
17.5 mm, Ūa = 8.3 cm/s,
λ = 0.039, Reh = 1, 450,
Fr = 0.2) with 5 con-
tinuous point sources illus-
trates the mass transport
in a uniform open-channel
flow. The flow is turbulent
and free of secondary cur-
rents, the transverse mass
spreading is consistent with
predictions for equilibrium
free-surface shear flows.

These estimates have been verified also quantitatively in the shallow flow facil-
ity from detailed mass concentration measurements employing the PCA mea-
surement technique (cf. Section 3.2), Rummel (2002) obtained Dt,y/ (U? h) =
0.16 for similar base flow conditions.

The lateral spreading of the plume is indicated by the downstream increase
of the plume width wp, approximated on both sides as a distance from the
centerline of twice the standard deviation of a Gaussian tracer distribution
c(y)/c(0) = exp

(
−1/2

(
y/
√

2Dt,yt
)2)

, thus

wp (x) = 4σc,y (x) = 4
√

2Dt,yx/Ūa . (5.10)

The growth of a tracer plume, i.e. wp ∝ x1/2 has been found quantitatively to
be in agreement with (5.10). Also from flow visualizations the Equations (5.9)
and (5.10) can be evidenced. For the flow conditions of Figure 5.9 the plume
width can be estimated to about wp = 0.12 m after a distance from the source
of 5.0 m at the end of the area of observation.
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Summary of Part I

Experimental set-up. To experimentally investigate shallow turbulent wake
flows a new shallow flow facility has been installed at the Institute for Hydro-
mechanics, University of Karlsruhe. Plane near-equilibrium bottom friction–
induced shear flows can be realized with a horizontal extent of 5.5 m times
13.5 m and with a flow depth of about 20 mm to 30 mm. Fully automated
flow controls and a 3-axial traversing system ensured the necessary accuracy,
stability, and repeatability for the experimental programs. Table 5.1 provided
an overview about the shallow flow facility and its instrumentation.

Due to the large horizontal and small vertical dimensions of the shallow
flow field non-invasive measurements of flow velocities and mass concentrations
could only be conducted from above the flow facility through the free water
surface. Shallow wake flows are multi–scale flows with length scales ranging
from the dissipative scales of random turbulence induced by vertical bottom
shear up to the large scales of quasi-periodic motion of the horizontal wake
flow. In order to satisfy this duality two different optical flow measurement
systems have been employed. The measurement devices for the flow velocities
were commonly available scientific systems, whereas the mass concentrations
were obtained by specially designed or developed systems.

Point-wise measurement systems. A two-dimensional Laser Doppler Ve-
locimetry (LDV) system has been employed to observe the horizontal flow
velocity components point-wise with high spatial and temporal resolution as
to access also the small-scale 3D turbulent fluctuations. Table 4.1 listed the
point-wise flow measurement equipment.

The monochromatic LDV laser light also excited a fluorescent dye tracer in
order to allow for additional Laser Induced Fluorescence (LIF) measurements.
The optical probe head of the LDV system also received the fluorescent radi-
ation, thus, the LIF was operated in an on–axis mode, which has never been
reported before. A LIF attenuation model, given by Equation (4.22), extended
the measurement range well into the non-linear concentration–irradiance de-
pendency, and has been parameterized in order to capture the wide and dy-
namic spectrum of concentrations occurring in the wake near– and far–field.
The optical arrangement guaranteed for a spatial correlation of the LDV and
LIF measurements, the temporal coincidence was ensured by an additional
data linking device.

The combined LDV-LIF system allowed for the synchronous measurement
of velocity and mass, and hence, made available also the horizontal mass trans-
port. Chapter 7 will present turbulence characteristics of shallow wake flows
obtained from analyses of LDV-LIF data.

Field-wise measurement systems. The spatial correlation of the low-
frequent quasi-periodic wake flow had to be observed by field-wise optical
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flow measurements. A standard Particle Image Velocimetry (PIV) system
has been adapted to obtain horizontal velocity fields close to the free surface
(Weitbrecht et al., 2002) with a spatial and temporal resolution that al-
lowed to access the large-scale motion, but not the inertial range of small-scale
turbulent fluctuations. The equipment of the field-wise measurement systems
was listed in Table 3.2. In Chapters 8 and 9 time-mean evaluations of PIV data
will be used to characterize shallow wakes, and to verify an analytical wake
model and linear stability analyses. The coherent flow field is extracted from
surface velocity fields obtained by PIV measurements in Chapter 10 for the
structural analysis of shallow vortex street-like wakes.

In order to observe the field-wise concentrations of a tracer mass a Planar
Concentration Analysis (PCA) has been realized. A hydro–optical model for
the light scattering and absorption has been formulated in Equation (3.22),
and has been translated into a conversion algorithm to obtain depth–averaged
mass concentrations from irradiance distributions observed with a digital video
camera. Though PIV and PCA could not be operated simultaneously, a phase–
resolved averaging technique has been implemented which allowed to observe
the mass transport in the low-frequent periodic flow field associated with the
large-scale vortical structures. Chapter 11 will present coherent quasi-periodic
and small-scale fluctuating mass fields obtained by PCA in vortex street-like
wake flows, and will correlate them to flow quantities derived from the PIV
surface velocity fields. In Chapter 9 time–mean distributions of the depth–
averaged concentrations will be given.

A set of complementary measurement series provided detailed information
of a variety of shallow wake flows of the vortex street (VS), unsteady bubble
(UB), and steady bubble (SB) shallow wake stability classes. Hence, a data base
has been provided that can be employed for further data analyses, but also to
validate numerical analysis tools and simulation models. The flow conditions
of the examined shallow wake flows were listed in Table 5.2.
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6. Theoretical Background of Turbulence and its

Local Description

Due to our human perceptive and cognitive abilities, we build up a four-
dimensional image of our surrounding environment. We interpret and rate all
our experiences with respect to the spatiotemporal space, the so-called ‘phys-
ical space’. Despite our better spatiotemporal intuition it is sometimes useful
to find a more suitable frame to describe and analyze processes. For instance,
it might be easier to find a solution to a set of equations, if we leave the spa-
tiotemporal domain and transform the equations to view and solve them in
another domain.

6.1 Introduction to time-series analysis

A turbulent process can be characterized as a continuous random change of
a quantity in time or in space. However, from experimental observation or
from numerical simulation we only have incomplete, namely discrete, informa-
tion of these processes depending on the temporal or spatial resolution of our
tools. Owing to this fact, but also for brevity, we summarize aspects of time-
series analysis in this section primarily with the help of discrete representations
using summations, and avoid continuous representations using integrals. Fur-
thermore, we restrict this short introduction to the description and analysis
only of the temporal evolution of a turbulent process at a given point fixed
in space. The same techniques analogously apply to the spacial analysis at a
specific time.

6.1.1 Correlation

Let φ (t) be a statistically stationary and ergodic process, as it evolves in time
at a fixed place in space. Information of this process is only available at certain
times, e.g. since we observe the process with a sampling device. Thus, we only
have a discrete representation of the process discretized at equal time intervals
Mt

φ (tk) = φk, where tk = t0 + k Mt, k ∈ N0 (6.1)
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We now use φk to describe the turbulent behavior of a steady flow by the central
moments (of the time-series itself instead of its probability density function).
The process can be characterized by its mean (or expectation) mφ = 〈φk〉,1 and

by its 2nd central moment, i.e. the variance σ2
φ =

〈
(φk − 〈φk〉)2

〉
=
〈
φ2
k

〉
−

m2
φ. Also the probability density function p (φ) can be evaluated to describe

fluctuations of the process variable; a natural random process often shows a
normal or Gaussian probability distribution p (φ). Skewness and flatness or
kurtosis, the 3rd and 4th central moments, express the shape of a probability
density function (PDF) with respect to the degree of asymmetry about its
mean, and to the peakedness of the PDF, respectively. A Gaussian PDF reveals
a skewness of 0, i.e. symmetry about its mean, and a flatness of 3σ 4

φ .
Unfortunately, the central moments do not contain any characteristics

about the sequence or evolution of the time-history. In order to avoid this
loss of information about the temporal interrelation of a turbulent process,
correlations provide the appropriate statistical means. The correlation func-
tion of two random process variables φ and ψ, which are sampled with a time
lag τ at times t and t+ τ , is defined as

Rφψ (τ) = 〈φ (t) ψ (t+ τ)〉 . (6.2)

The correlation coefficient or normalized covariance is written as

rφψ (τ) =
〈(φ (t) −mφ) (ψ (t+ τ) −mψ)〉

σφ σψ
. (6.3)

Consequently, the auto-correlation function and the auto-correlation coeffi-
cient of a single random process variable are, respectively,

Rφφ (τ) = 〈φ (t) φ (t+ τ)〉 (6.4)

and

rφφ (τ) =
〈(φ (t) −mφ) (φ (t+ τ) −mφ)〉

σφ σφ
=
Rφφ (τ) −m2

φ

σ2
φ

. (6.5)

For a continuous infinite process the time average 〈 〉 is given by

〈 〉 = lim
T→∞

1

T

∫ T

t=0
dt. (6.6)

Some basic features of Rφφ have to be mentioned briefly. For a time lag
τ = 0 the auto-correlation function becomes

Rφφ (0) = m2
φ + σ2

φ =
〈
φ2
〉
,

and the autocorrelation coefficient rφφ (0) = 1 indicates a perfect correlation,
since both representations of the process are identical. For the general case of

1 The 1st central moment, thus, yields


(φk − 〈φk〉)1

�
= 0.
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an aperiodic process the autocorrelation approaches the mean value for large
time lags,

lim
τ→∞

Rφφ (τ) = m2
φ.

Finally, since the process is statistically stationary,

Rφφ (τ) = Rφφ (−τ) .

Under real-world conditions, we are almost always concerned with a finite
sequence (or an ensemble of finite sequences) of the discretized representation
φk of the continuous infinite random process φ (t). From Equation (6.1) the
finite, equal-interval discretized function is given by

φ (tk) = φk, where tk = t0 + k Mt, k = 0, 1, 2, . . . , N .

By applying a finite discrete averaging procedure the auto-correlation function
Rφφ defined by (6.4) yields

Rφφ (τ = s Mt) =
1

N − s

N−s∑

i=1

(φ (ti) φ (ti + s Mt))

=
1

N − s

N−s∑

i=1

(φi φi+s) , (6.7)

where the length of the discrete time lag τ = s Mt should not exceed a reason-
ably small2 percentage of the total length, i.e. s/N � 1.

6.1.2 Fourier analysis

A periodic function can be split into an infinite series of its harmonic compo-
nents (a Fourier series)

φ (t) = a0 +
∞∑

k=1

(
ak cos

2πkt

T
+ bk sin

2πkt

T

)
(6.8)

where a0 and the ak and bk are constant Fourier coefficients given by

a0 =
1

T

∫ T/2

−T/2
φ (t) dt

ak =
2

T

∫ T/2

−T/2
φ (t) cos

2πkt

T
dt k ∈ N (6.9)

bk =
2

T

∫ T/2

−T/2
φ (t) sin

2πkt

T
dt k ∈ N.

2 Emery & Thomson (1998, p. 376) recommend not to push the time lag beyond 10-20%
of the length of a data series.
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T denotes the main time period of the fluctuating function, ωk = 2πk/T de-
fines the angular frequency of the kth harmonic, the spacing between adjacent
discrete harmonics is Mω = 2π/T . As T → ∞ approaching the aperiodic case,
the discrete Fourier series becomes the continuous Fourier integral and the
Fourier coefficients become continuous functions of the frequency ω, called the
Fourier transform.

For this classical approach of Fourier analysis to turn a discrete Fourier
series representation into a Fourier integral to be true, a necessary condition
can be expressed in the form

∫ ∞

−∞
|φ (t)| <∞, (6.10)

i.e. the random function φ has to be absolute-integrable over the time domain.
This condition holds only for φ, which decays to zero for t→ ±∞. Contrarily,
aperiodic functions, which are not damped in time, can not be treated with
the classical Fourier theory.

It has become customary to use the complex notation of the Fourier trans-
form pair. Φ (ω) is the (complex) Fourier transform of φ (t),

Φ (ω) =
1

2π

∫ ∞

−∞
φ (t) e−iωtdt (6.11a)

φ (t) =

∫ ∞

−∞
Φ (ω) eiωtdω. (6.11b)

6.1.3 Spectral Density

If φ (t) is absolute-integrable over the entire domain, then also its transform
pair defined by (6.11a) exists. The total energy E of the function is finite, and
it is given by

E =

∫ ∞

−∞
|φ (t)|2 dt <∞.

The energy spectral density (ESD) of φ (t) in the frequency domain is then
defined as the square of the modulus of its Fourier transform Φ (ω) for all
frequencies

Sφφ (ω) = |Φ (ω)|2 = Φ (ω) Φ∗ (ω) , (6.12)

where the superscript asterisk denotes the complex conjugate.3

3 We can employ Parseval’s theorem to show that dE/dω = Sφφ(ω) denotes the energy
per unit angular frequency centered around ω. Parseval’s theorem states, that the total
energy E of φ(t) in the time domain is equal to the total energy

R
Sφφ dω in the frequency

domain,Z
∞

−∞

|φ (t)|2 dt =

Z
∞

−∞

|Φ (ω)|2 dω .
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Since in the general case of an undamped aperiodic random function, neither
φ(t) nor its discrete representation φ(tk) are absolute-integrable, and therefore
its total energy is not bounded, it is not possible to directly compute its spectral
density (ESD). However, the auto-correlation function Rφφ (τ), which can be
understood as the power (i.e. energy per time) of the process function, still is
absolute-integrable4 , thus its Fourier transform exists. We can then define the
spectral density of the process φ by

Sφφ (ω) =
1

2π

∫ ∞

−∞
Rφφ (τ) e−iωτdτ , (6.13)

and its inverse transform by

Rφφ (τ) =

∫ ∞

−∞
Sφφ (ω) eiωτdω. (6.14)

Since the auto-correlation function of a process signal can be understood as its
signal power (i.e. energy per time, cf. Section 6.1.1), from the above definition
(6.13) Sφφ (ω) is called power spectral density (PSD). The distinction between
energy and power spectral density is quite subtle, and in the practically in-
teresting case of a finite discrete representation (or an ensemble thereof) of a
random process, it can be shown for a periodic process that both expressions
are equal, and how to estimate the spectral density of an aperiodic random
process (cf. e.g. Newland (1993, pp. 120), Marple Jr. (1987, chpt. 4)).

From the previous subsection we know, that Rφφ (τ = 0) =
〈
φ (t)2

〉
, which

for a zero mean process is the average energy of the process fluctuations. For
τ = 0, (6.14) then yields

∫ ∞

−∞
Sφφ (ω) dω =

〈
φ (t)2

〉
(6.15)

6.1.4 Discrete Spectral Analysis

In most experimental measurements or numerical simulations of random
processes the sample data sets are finite and discrete representations φk of the
continuous process, which can be described using (6.1) for data series sampled
with equal intervals Mt. Time series analysis aims to estimate the statistical
characteristics of the true process from its finite discrete representation, and
to specify the necessary length and density of φk in order to satisfy certain
confidence criteria of the estimates.

The obvious and classical method to estimate spectra from measured data is
to first make an estimate of its correlation function and then to apply a Discrete
Fourier Transform (DFT) to this function to obtain the required spectrum. For
this classical approach only a single Fourier transform has to be performed.

4 Provided that φ is a zero mean process 〈φ〉 = 0, which φ can easily be adjusted for.
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The development of the Fast Fourier Transform (FFT) in the 1960s provided
fast and efficient algorithms to perform a discrete Fourier transform of a time
series, an introduction to FFT is found for instance in Brigham (1995). It is
now quicker and more accurate to calculate spectral estimates directly from
the original times series φk, instead of estimating spectra by first determining
Rφφ and then Fourier transforming these as to indirectly get the spectra.

We finish this section by giving a short overview on calculating a reliable
estimate for the spectral density of a random process φ (t) by making use of
a set of M finite representations φk.5 A reader, whose interest in time series
analysis may reach beyond the limits of this recipe-like summary, is referred
to a broad variety of textbooks, for instance Marple Jr. (1987); Newland
(1993); Emery & Thomson (1998). As needed in the framework of this study,
we will give more detail in Chapter 7, where we apply the methods of time
series analysis to LDV-LIF measurements in shallow turbulent wake flow.

The procedure of calculating an estimate for the spectral density of a random
process φ (t) is as follows:

1. Prepare evaluation of the spectra.
a) Estimate the frequency range of interest f ∈ [flow fhigh].
b) Choose an appropriate re-sampling interval M t so that the Nyquist

frequency fN = 1/2 Mt exceeds the maximum frequency present and is
at least e.g. twice the highest frequency of interest.

c) Calculate the required length T of each re-sampled data series (ex-
cluding any padded zeros) using the lowest frequency of interest to be
(say)

T = (0.25 ÷ 0.5) 1/flow.
d) Verify the necessary resolution of the PDF.

• Decide the required accuracy σφ/ 〈φ〉.
• Estimate the required frequency resolution, i.e. specify the maximum

effective bandwidth Be of the PSD.
• Calculate the required length Tres of each re-sampled data series (ex-

cluding any padded zeros) from the estimate
σφ
〈φ〉 ' 1√

BeTres
,

and verify Tres < T .
e) Determine the number of data points N = T/ M t which must be

contained in each re-sampled time series.
f) Find the number of added zeros L needed to increase the length of

each re-sampled series of data points to the next integer power of 2, i.e.
N + L = 2n, n ∈ N.

5 Though we demonstrate the time series analysis for an auto-spectral density Sφφ only, it
can easily be expanded also to a cross-spectral density Sφψ.
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g) Determine the odd number (2n + 1) of adjacent spectral estimates,
which have to be band-averaged to give the required bandwidth of the
PSD, using the equation

(2n+ 1)
N

N + L
= BeT

2. Extract ensembles of blocked time series. Remove the mean and trend from
the full time series of length T ′. Conduct an equal interval re-sampling of
the de-trended time series using the re-sampling interval Mt to obtain N ′

data points.

a) Calculate the number M = (1+pol)N
′/N (round down) of data blocks

using a factor pol . 0.25 for overlapping blocks. Divide the full time
series into M blocks to obtain data series φr, r = 0, 1, 2, . . . (N − 1)
each with N data points and length T .

b) Taper each time series with a window function w(t) to reduce effects
due to end discontinuities.

c) Pad each data series with L zeros in order to apply the FFT to 2n data
points.

3. Calculate the DFT of each series φr given by

Φk =
1

N + L

N+L−1∑

r=0

φre
−i2πkr/N+L , (6.16)

k = 0, 1, 2, . . . N + L− 1 ,

and re-scale the spectra, since due to the applied window part of the spec-
tral energy is lost. This has to be adjusted by multiplying Φk with a con-
stant factor awndw depending on the window function w(t).

4. Calculate the spectral density for the full time series.

a) Calculate the required series of spectral coefficients Sk by forming the
products

Sφφk = Φk Φ
∗
k, k = 0, 1, 2, . . . , (N + L− 1).

b) Calculate estimates of the continuous spectrum from the formula

S̃ (ωk) '
TL
2π
Sk,

where ωk = 2πk
TL

and TL = (N + T ) Mt.

c) For block-segmented data, block-average the spectral density estimates
Sk from the M blocks frequency-band per frequency-band to obtain a
smoothed spectral estimate.

d) Modify these estimates to correct for the added zeros by multiplying
by correction factor (N + L) /N to give

S̃′ (ωk) '
N + L

N

TL
2π
Sk,
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where |k| ≤ (N + L) /2 and k ∈ Z. Conduct final smoothing of S̃′ (ωk)
by calculating the band-average of adjacent spectral estimates accord-
ing to

Ŝ (ωk) =
1

2n+ 1

n∑

m=−n
S̃′ (ωk+m) . (6.17)

6.2 Spectral description of turbulence

In the common understanding, a turbulent flow is a flow which is disordered in
time and space. As for most fundamental phenomena, also for turbulence we
lack a more accurate mathematical definition. Instead, the following properties
will serve as a more precise characterization of turbulence (following Lesieur,
1997, p. 2):

• unpredictability of flow realization in the sense of amplification of small per-
turbations;

• increased mixing ability for transported quantities like heat, pollutants, or
tracers;

• interaction of a wide range of eddy scales (spatial complexity), which implies
high Reynolds numbers and excludes chaos of low-dimensional dynamical
systems;

• fluid continuum flow, governed by the equations of fluid mechanics, which
excludes for instance Brownian motion);

Two additional properties are often considered in defining turbulence (see for
instance Tennekes & Lumley, 1977): the existence of strong vorticity fluc-
tuations and strong energy dissipation.

6.2.1 The energy cascade

As already mentioned in Section 2.2 the production of turbulent kinetic en-
ergy is associated with large-scale turbulent motions in a low wave number
range, the so-called energy-containing range. Usually, the rate–of–turbulence
production is defined as

P ≡ −
〈
u′i u

′
j

〉
Sij . (6.18)

Forced by a mean shear strain rate

Sij ≡
1

2

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)
, (6.19)

TKE is extracted from the mean flow, and is incorporated into large-scale 2D
vortices.6 If `0 is the characteristic length scale of the mean flow, it is convenient
6 See also the decomposition of the coherent flow field into large-scale and small-scale parts

for vorticity, Equation (10.8), and for TKE, Equation (10.9).
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to introduce a length scale `EI ≈ 1/6 `0 to demarcate the energy-containing
range of large-scale anisotropic turbulence with scales ` > `EI . Due to the mean
rate-of-strain Sij vorticity is generated continuously perpendicular to the mean
shear plane, so the anisotropy of the large-scale turbulence is maintained. The
TKE contained in the large scales is transferred to smaller scales of turbulence
at a transfer rate T (`), as the large scale eddies (and so their vorticity) are sub-
jected to a strain field, which is time-dependent and more and more isotropic
at smaller scales. Provided a sufficiently high Reynolds number, according to
Kolmogorov’s hypothesis of local isotropy, the small-scale turbulent motions are
statistically isotropic, and—the first similarity hypothesis—its statistics have
an universal form, which uniquely depends on the energy transfer rate T (`)
and on the viscosity ν. The universal equilibrium range of turbulence scales
` < `EI again can be split into an inertial subrange, where the flow behaves
essentially inviscid, followed by the dissipation range for ` < `DI ≈ 60 `η. Since
the turbulence statistics depend solely on T (`) in the inertial subrange—the
second similarity hypothesis—, TKE produced in the energy-containing range
at large turbulence scales is just transferred along the scales of the inertial
subrange (`EI > ` > `DI) without any change of T (`) into the dissipation
range. There, near the Kolmogorov length scale `η the velocity gradient be-
tween adjacent vortices is steep enough to allow the viscous stresses to become
important. Here, energy is dissipated at a rate ε. The rate of viscous dissipation
of turbulent kinetic energy is usually given by

ε ≡ 2ν 〈sij sij〉 , (6.20)

where the fluctuating rate of shear strain is given by

sij ≡
1

2

(
∂u′i
∂xj

+
∂u′j
∂xi

)
. (6.21)

As shown by Hinze (1975, chpt. 3) in locally isotropic turbulence the various
squared velocity gradient terms may be combined in such a way, that the mean
dissipation rate can be approximated by

ε = 15ν
〈(
∂u′/∂x

)2〉
. (6.22)

The dissipation rate is of the same size as the energy production rate and
the energy transfer rate,7 i.e.

P = T (`) = ε . (6.23)

Figure 6.1 sketches the spectral picture of Kolmogorov’s energy cascade in
turbulent shear flows.
7 In the mean turbulent kinetic energy budget, production exactly balances dissipation

only in a steady, homogeneous shear flow (in which all averaged quantities except Ui are
independent of position and in which Sij is a constant). Note, that though in most shear
flows P and ε do not balance, they are of the same order of magnitude in most cases.
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Figure 6.1. A schematic diagram of the energy cascade, its scales and ranges at very high
Reynolds numbers (Pope, 2000, p. 188)

6.2.2 Kolmogorov spectra of turbulent velocity fields

The spectrum in the universal equilibrium range. Following Kol-
mogorov’s concept of local isotropy at smaller scales of turbulence no per-
manent anisotropy can prevail, since eddies of a given size are continuously
stretched mainly by somewhat larger (but still 3D) eddies, which themselves
maintain a strain-field constantly shifting in direction and magnitude. Thus,
though locally at smaller scales ` < `EI the instantaneous strain-field is still
anisotropic, the time-average of the the strain-field 〈sij〉 becomes isotropic, and
so do all the turbulence properties. Since in the equilibrium range the scales
are small compared to the energy-containing range, i.e. `� `0, the conditions
of the production of TKE do not influence the further re-distribution of en-
ergy along the smaller scales. The spectral energy distribution S(kw)8 may
only depend on the transfer and dissipation of TKE. Since near `η energy is
dissipated due to viscosity ν at a rate ε, and the transfer rate equals the dissi-
pation rate ε (cf. Equation (6.23)), according to Kolmogorov’s first similarity
hypothesis we can characterize these processes solely by ε and ν. Therefore,
the energy spectral distribution is S = S (kw, ε, ν). In non-dimensional form,
Kolmogorov’s scaling law reads

S (kw)

ν5/4 ε1/4
=
S (kw)

u2
η `η

= fη (kw `η) , (6.24)

where `η =
(
ν3/ε

)1/4
and uη = (εν)1/4 are the Kolmogorov micro scales of

turbulence for length and velocity, respectively. fη (kw `η) is a universal non-
dimensional function called the Kolmogorov spectral function. If we choose ε
and kw to normalize S(kw), Equation (6.24) reads in alternative form

S (kw)

ε2/3 k
−5/3
w

= f̃η (kw `η) . (6.25)

8 As usual S is evaluated in the wave number domain, which is related to the spatial domain
by kw = 2π/`.
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The spectrum in the inertial subrange. In the low wave number part
of the universal equilibrium range viscous dissipation is negligible, thus—
Kolmogorov’s second similarity hypothesis—in the inertial subrange the vis-
cosity ν does not influence the re-distribution of TKE. In Equation (6.25) ν
enters only through the micro length scale `η via the spectrum function f̃η. For
low wave numbers (kw `η) � 1, the spectrum function becomes independent of
its argument (kw `η), and thus f̃η becomes a constant. Within the inertial sub-
range we thus have f̃η ((kw `η)) = C. Equation (6.25) then results in the famous
Kolmogorov −5/3 power law for the energy spectral density distribution,

S (kw) = C ε2/3 k−5/3
w . (6.26)

The universal Kolmogorov constant C is experimentally evaluated to be C =
1.5. For isotropic conditions and with S(kw) being a power-law spectrum (cf.
Pope, 2000, pp. 228), the one-dimensional spectra are given by

S11 (kw1) = C1 ε
2/3 k

−5/3
w1 (6.27a)

S22 (kw1) = C2 ε
2/3 k

−5/3
w1 (6.27b)

where C1 ≈ 0.49 and C2 ≈ 0.65.

The spectrum in the energy-containing range. Also for very low wave
numbers kw → 0 in the energy-containing range the viscosity ν is of no rele-
vance, as we already stated for the inertial subrange. The distribution of energy
along the turbulence scales now depends on the production of TKE extracted
at lowest frequencies from the mean flow, which we characterize by its mean
shear strain rate Sij . At smaller turbulence length scales ` ≈ `EI the energy is
transferred at a rate T = ε toward the universal equilibrium layer. Therefore,
the large-scale or inertial scaling in the energy-containing range will be based
on Sij and ε, the large-scale spectrum is only dependent on S = S (kw, Sij , ε).
If we employ the characteristic large scales ` and u of the mean flow, Sij and
ε scale as Sij = u/` and ε = u3/`. The large-scale distribution of the energy
spectral density then becomes

S (kw)

ε3/2 S
−5/2
ij

=
S (kw)

u2 `
= f` (kw `) (6.28)

Compared to the universal spectrum function fη in the equilibrium range,
the large-scale spectrum function f` depends on the characteristic geometric
property ` of the mean flow, i.e. it is not universal for all turbulent shear flows,
but varies for different classes of shear flows.

6.2.3 Spectra of passive scalar tracers

The cascade in the passive scalar tracer field. If the Reynolds number is
large enough for an equilibrium range to exist in the kinetic energy spectrum,
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then there is also an equilibrium range, exhibiting local isotropy, in the spec-
trum of a passive scalar variance, because it is the turbulent motion, that is
mixing the scalar field (cf. Tennekes & Lumley, 1977, p. 281). The dilute
concentration c of a tracer mass, as used throughout this work, is a scalar pas-
sive to the flow; to give another prominent example for a scalar fluid property
also a small temperature difference θ can be regarded as a passive scalar fields
in the flow.9 An estimate for the transfer of scalar variance along the wave
number kw, i.e. an estimate for its spectral flux, is given by

Tγ (kw) = C k 5/2
w Sγ S

1/2. (6.29)

Spectra in the equilibrium range. Within the equilibrium range, Sγ (kw)
should scale with the same parameters as S (kw), i.e. ε and ν, together with
the corresponding parameters for the scalar field. The dissipation rate of scalar
variance (i.e. the scalar flux) will be defined as

εγ = Dm

〈
∂c

∂xi

∂c

∂xi

〉
, (6.30)

where Dm is the molecular diffusivity (or thermal conductivity, respectively).
Therefore, the spectral distribution of scalar variance will depend on Sγ =
f (kw, ε, ν, εγ , Dm). Non-dimensionalization for instance results in

Sγ (kw) = εγ ε
−1/3 k−5/3

w f (kw `η, Sc) ,

where Sc = ν
Dm

is the Schmidt number (or the Prandtl number, respectively).
Thus, the non-dimensional spectrum function f varies for different fluids.

The inertial-convective subrange. At high Reynolds numbers an inertial
subrange exists, i.e. `0 � ` � `η. If Dm is small enough, so that there is a
part of the (quasi-inviscid) inertial subrange, where also molecular diffusion
is unimportant, we obtain an inertial-convective subrange, where scalar fluc-
tuations are simply convected. Thus, the spectral distributions of energy and
scalar fluctuation should be independent of ν, resp. Dm, i.e. Sγ = Sγ (kw, εγ , ε)
resulting in

Sγ (kw) = β εγ ε
−1/3 k−5/3

w , (6.31)

as first postulated by Corrsin (1951) and Oboukhov (1949). From experi-
mental evidence, the proportionality constant can be estimated to be β ≈ 0.5.

In the spectrum of velocity fluctuations the viscous dissipation dominates
the energy cascade for length scales ` of order of the Kolmogorov micro length,
O (`) = `η. If the molecular diffusivity Dm < ν is small compared to the
kinematic viscosity, i.e. Sc = Pr = ν

Dm
> 1, then the scalar field is affected

only by Dm at scales smaller than `η. In the dissipative-convective subrange

9 On the molecular scale, the diffusivity Dm of the solution or the conductivity Dϑ of the
fluid characterize the scalar field.
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for `η > ` > `ηγ
10, the velocity fluctuations have already been damped due

to viscous dissipation, whereas the scalar fluctuations are still unaffected by
molecular diffusion. At even smaller scales ` < `ηγ in the dissipative-diffusive
subrange, also the scalar fluctuations are damped.

On the contrary, for low Schmidt numbers Sc < 1, i.e. ν < Dm and `η < `ηγ ,
the scalar fluctuations can be dominated by the molecular diffusion, whereas
the kinetic energy is not yet influenced by molecular effects. This is called the
inertial-diffusive subrange of the scalar variance spectrum.

Inertial-diffusive subrange. In fluids with low Schmidt/Prandtl number
Sc < 1 with Dm > ν and `ηγ > `η we can observe a range of wave numbers
kw indicated by (kw `η) � 1, in which on the one side the transfer T (kw)
of kinetic energy is constant and equal to P and ε. On the other side, since(
kw `ηγ

)
≥ 1, the spectral flux of scalar variance Tγ (kw) is not constant as

in the inertial-convective subrange, but decreases due to local dissipation by
molecular diffusion. Therefore, we call the range of turbulence length scales
within `ηγ > ` > `η the inertial-diffusive subrange. As recalled by Lesieur
(1997, pp. 202), the scalar fluctuation spectrum, predicted by Batchelor
(1959), obeys

Sγ (kw) ∝ εγ D
−3
m k−4

w S (kw) , (6.32)

which yields using the assumption of a k−5/3
w energy spectrum

Sγ (kw) ∝ εγ D
−3
m ε2/3 k−17/3

w . (6.33)

The scalar micro scale `ηγ is defined by Equation (6.67) for low Sc. It demar-
cates the lower limit of the inertial-convective subrange ` > `ηγ , and thus the
beginning of the inertial-diffusive subrange with ` < `ηγ .

The dissipative-convective subrange. Considering fluids with high
Schmidt numbers Sc ≥ 1, there exists a range of wave numbers kη < kw < kηγ ,

in which the strain-rate field of order O
((

ε
ν

)1/2)
further reduces the scales

of scalar fluctuations, but in which molecular diffusion is not yet effective,
i.e. the spectral scalar flux is on constant rate εγ . We thus expect the
spectral distribution of scalar fluctuation Sγ in this subrange to depend on

Sγ = f
(
kw, εγ ,

(
ε
ν

)1/2)
as proposed by Batchelor (1959). Thus, in the

dissipative-convective subrange the spectral distribution of scalar variance fol-
lows a k−1

w law

Sγ = CB εγ

(ν
ε

)1/2
k−1
w , (6.34)

where CB is called Batchelor’s constant.

10 `ηγ is the Batchelor micro scale, a diffusive micro scale defined by Equation (6.66).
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The dissipative-diffusive subrange. In such high Schmidt number (or
Prandtl number) fluids molecular diffusivity (or conductivity, respectively) be-
comes important for eddy sizes smaller than the Batchelor’s micro scale `ηγ
given by Equation (6.66). Then also

`ηγ
`η

= Sc−1/2 is valid. It has been shown
by Batchelor (1959), that the scalar spectrum decreases exponentially for
kw > kηγ . As argued by Tennekes & Lumley (1977, p. 285) for wave num-
bers kw near kηγ , where Tγ (kw) is not too different from εγ , the scalar variance
spectrum can be approximated by

Sγ (kw) = CB εγ

(ν
ε

)1/2
k−1
w e−CB (kw `ηγ )

2

. (6.35)

6.2.4 Spectra of 2D turbulent flows

With respect to the turbulence characteristics given on page 154, a 2D tur-
bulent flow can be defined as a turbulent flow depending only on two spatial
dimensions. The flow field u (x, y, t), and so its turbulence properties, does not
depend on a third spatial dimension z, which does not include, that there is no
velocity component w in the third direction. The Navier-Stokes equations de-
scribing such a flow field show that this velocity component obeys a 2D passive
scalar equation,

DH w

dt
=
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
= ν∇2

Hw , (6.36)

where DH
dt and ∇2

H are the horizontal substantial derivative and the horizontal
Laplacian, respectively.

In particular, the independence of the third dimension z characterizes flows
which (by definition) are unstable, when they become turbulent (cf. Sec-
tion 9.2), and develop 3D instabilities. Following the well-known concept of
the return to three-dimensionality (cf. e.g. Herring, 1974), a purely 2D flow
in an infinite domain will become 3D if there is no external force acting to
maintain the two-dimensionality. It therefore seems to be unrealistic to ex-
pect 2D flows to belong to the physical world; Kraichnan & Montgomery
(1980) stated in their classical review-paper:

“Two-dimensional turbulence has the special distinction that it is
nowhere realised in nature or in the laboratory but only in computer
simulations.”

Kraichnan & Montgomery (1980, p. 549)

Nevertheless, since then 2D turbulent flows have been examined both in
nature (e.g. planetary atmospheric and oceanic flows) and in the laboratory
(e.g. thin-film flows, liquid-metal flows, flows under strong rotation, M.H.D.
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flows).11 For instance, a simple possibility is to consider a flow with a limited
extent in the vertical dimension, for instance constrained by two parallel plates
of a distance D. At scales much larger than D, the flow is expected to be
horizontal and 2D. Along the plates boundary layers will develop, interact, and
generate 3D turbulence at scales smaller than D, which can effectively dissipate
the kinetic energy of the large-scale 2D fluid motion. It is therefore necessary to
restrict the growth of these boundary layers. This may be achieved for example
with the help of a rapid12 rotation Ω perpendicular to the boundaries.

2D turbulent flows include the tendency to build up large coherent vortical
structures, as will be shown below. Eventually and especially for externally
forced turbulence, such eddy structures may organize and develop into a steady
coherent flow, loosing its unpredictability, which is a general characteristic for
both for 3D and 2D turbulence.

It can be shown that also the vertical vorticity ωz = −∇2
Hψ = −

(
∂u
∂y − ∂v

∂x

)
,

which is the vorticity of the horizontal velocity uH , obeys an equation similar to
(6.36) for w (x, y, t). However, the vertical vorticity is not a passive quantity to
the horizontal flow field, since small deviations imposed on ωz would influence
the horizontal velocity uH . Nevertheless, a passive scalar advected in a flow of
a Schmidt number of unity, in which the molecular diffusivity of the tracer is
equal to the kinematic viscosity of the flow, would behave exactly like ωz in
2D turbulence.13

As a consequence of the conservation of vertical vorticity, unlike in 3D
turbulence a cascade of kinetic energy toward the small scales due to vortex
stretching mechanisms does not exist. Instead, the early theoretical studies
in 2D turbulence (e.g. Batchelor, 1967) showed that (for low but non-zero
viscosity) kinetic energy is conserved, as is vorticity. The enstrophy, i.e. the
variance of vorticity, decreases due to the absence of vortex stretching in con-
trast to 3D turbulence, where enstrophy increases as smaller turbulence scales
become involved due to the cascading process.

In the following subsections the central concepts of purely 2D isotropic
turbulence are briefly reviewed. The essential statistical characteristics of such
turbulence are described for instance by Kraichnan & Montgomery (1980)
in more detail. A more complete discussion also of the contemporary develop-
ments is presented by Lesieur (1997) or Sommeria (2002).

11 Of course the ideal case of pure 2D turbulence will never occur in reality. But in the above
mentioned systems the nearly 2D flows can be described and predicted surprisingly well
using a 2D turbulence approach.

12 i.e. with low Rossby number
13 Unfortunately, in real-world flows we often encounter transport processes with Sc � 1,

and shallow flows can be regarded as 2D only in the large scales. Thus, the diffusive
mechanisms can not be covered by the 2D equations of motion without further subgrid-
scale modelling.
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Fjortoft’s theorem. The redistribution of kinetic energy and enstrophy in
a double cascade in 2D turbulence was given a first fundamental impulse by
Fjortoft (1953), as mentioned by Kraichnan & Montgomery (1980) or
Lesieur (1997). Fjortoft’s theorem, which has no relation with the inviscid
instability criterion in linear-instability theory, requests the conservation of
kinetic energy and enstrophy to hold. Given an initial distribution of kinetic
energy in Fourier space peaked around a wave number kwi, with time the kinetic
energy distribution will spread out and cover a wider wave number range, and
will consequently decrease in its peak value at kwi. The theorem then says that
in order to conserve both energy and enstrophy, more kinetic energy will be
transferred toward lower wave numbers than toward higher wave numbers, and
in turn more enstrophy will go down to smaller scales than to larger scales.
We will elucidate the spectral transport both of enstrophy and kinetic energy
in the next paragraphs.

The enstrophy cascade of 2D turbulence. In the wave number domain
we assume a forced 2D turbulence maintained by a stationary kinetic energy
forcing F (kw) centered at kwi. Kinetic energy and enstrophy are injected at
the rates ε =

∫∞
0 F (kw) dkw and β =

∫∞
0 k2

wF (kw) dkw ≈ k2
wiε, respectively.

The conservation equation for the enstrophy spectrum is
(
∂

∂t
+ 2νk2

w

)
k2
wS (kw, t) = k2

wT (kw, t) + k2
wF (kw) , (6.37)

where T (kw, t) is the transfer rate of TKE. The enstrophy flux across kw
may thus be given by Z (kw) ≡

∫∞
kw
k2
wT (kw) dkw. Assuming a steady energy

spectrum, from Equation (6.37) we obtain β = 2ν
∫∞
0 k4

wS (kw) dkw. For high
Reynolds numbers there exists a wave number range kwi < kw � kwd above
an enstrophy-dissipation wave number kwd, where the enstrophy dynamics are
not affected by viscosity. With a reasoning analogously to 3D turbulence we
find that Z (kw) ≡ β.

It was first proposed by Kraichnan (1967) that the kinetic energy spec-
trum in this range of wave numbers solely depends on the enstrophy production
rate β and the wave number kw. From dimensional grounds then the following
proportionality arises

S (kw) ∝ β2/3k−3
w . (6.38)

The same k−3
w enstrophy cascade was proposed by Batchelor (1969) for

freely-decaying 2D turbulence.
For high wave numbers kw > kwd molecular viscosity dissipates the enstro-

phy, if local vorticity gradients are sufficiently steep. The enstrophy dissipa-
tion wave number kwd only depends on β and ν. Analogously to the energy-
dissipative wave number demarcating the dissipative subrange of Kolmogorov’s
kinetic energy spectrum of isotropic 3D turbulence, we obtain
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kwd =

(
β

ν3

)1/6

.

To sketch a simplified picture of the enstrophy cascade we could imagine a
fluid parcel in a mean strained velocity field. The fluid parcel will be deformed
in the strain field and increase its characteristic longitudinal scale while short-
ening its transverse scale. As for 2D turbulence vorticity is conserved within
each parcel, this results in a transverse steepening of the vorticity gradient
across neighboring fluid parcels; in the spectral domain this means a flux of
vorticity toward higher wave numbers.

The inverse energy cascade of forced turbulence. Given a forcing at a
specific wave number kwi, which continuously injects kinetic energy at a rate
ε. Without any spectral truncation, neither at low kw due to boundaries nor
at high kw due to numerical cutoff, an energy cascade can freely develop. As
for the Kolmogorov spectrum in 3D isotropic turbulence, also in 2D turbulence
dimensional analysis leads to the same inertial subrange with a spectral energy
distribution (cf. (6.26))

S (kw) = C ε2/3k−5/3
w .

Since kinetic energy is conserved in 2D turbulence, a direct cascade toward
a dissipative range of high wave numbers cannot occur. Kraichnan (1967)
therefore suggested an inverse energy cascade toward low wave numbers and
large scales. Also Fjortoft’s theorem had shown that energy could be trans-
ferred to low kw more easily. Both from numerical and laboratory experiments
the theoretical concept of the inverse energy cascade in forced 2D turbulence
has been confirmed thoroughly.

In the ideal case of an unbounded fluid domain there is no need for energy
dissipation at low kw, since energy can be transferred to larger and larger
scales. At the same time, enstrophy is injected at kwi at a rate β = k2

wiε, and a
k−3 enstrophy cascade transfers energy toward high wave numbers. However,
as stressed by Kraichnan, the cascade should not be viewed as a carrying
belt to simultaneously transport the energy S (kw) and its related enstrophy
k2
wS (kw). The two cascades are mutually exclusive, as the rate of enstrophy

transfer vanishes in the energy cascade and vice versa. The classical concept
of the double cascading energy spectrum in forced 2D turbulence is illustrated
in Figure 6.2.

As predicted by Batchelor (1969) in freely evolving 2D turbulence the
inverse energy cascade does not hold, but as indicated by recent numerical
simulations starting at k−3

w the cascade continuously becomes steeper due to
the development and growth of LCS.
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Figure 6.2. Conceptual sketch of the double cascade in forced 2D turbulence with a
continuous forcing of production rates for kinetic energy ε and enstrophy β at kwi in the
inertial subrange (adapted from Lesieur, 1997).

Diffusion of a passive scalar in 2D turbulence. The transport of a passive
scalar in a 2D turbulent flow receives the special attention of the group of M.
Lesieur, because

“2D passive scalar diffusion is a significant problem when one is in-
terested in the large-scale diffusion of tracers or pollutants in the at-
mosphere or the ocean [...] Since the vorticity and the passive scalar
both obey [a conservation equation of the form (6.36)], they have close
analogies. However, the scalar, whose variance is an inviscid invariant,
is not constrained to the double energy-[vorticity] conservation like the
velocity field. This will rule out the possibility of strong inverse scalar
transport, inverse scalar cascades and negative eddy-diffusivity[14].”

Lesieur (1997, p. 308)

Given a scalar c (x, t), its spectrum Sγ (kw, t) with

1

2
〈c (x, t)2〉 =

∫ ∞

0
Sγ (kw, t) dkw,

the scalar dissipation rate εγ =
∫∞
0 k2

wSγ (kw, t) dkw and the scalar diffusivity
Dm. According to Lesieur & Herring (1985) the scalar dissipation wave
number is then
14 Contrary to 3D turbulence, negative values of the turbulent viscosity νt will and have to

occur in 2D turbulence for a spectral energy distribution steeper than k−1
w , as obtained

from numerical simulations with an appropriate turbulence model. (cf. Lesieur, 1997, p.
303)
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(a) Sc > 1

(b) Sc < 1

Figure 6.3. Conceptual sketch of the inertial subranges of the kinetic energy and scalar
spectra in the enstrophy cascade of 2D turbulence (Lesieur & Herring, 1985). The en-
strophy is injected at kwi with a rate β, and the scalar at kwi,γ > kwi at a rate εγ . (a)
high Schmidt number Sc > 1, i.e. Dm < ν - (b) low Schmidt number Sc < 1

kwc =

(
εγ
D3
m

)1/6

.

The scalar quantity shall be introduced into the 2D turbulent flow in the
spectral domain at a given wave number kwi,γ . We will first assume that
the scalar is injected into the enstrophy cascading range of wave numbers,
i.e. kwi < kwi,γ . The corresponding inertial-convective, inertial-diffusive, and
viscous-convective subranges are indicated in Figure 6.3.

In the inertial-convective range (i.e. for kwi,γ < kw < kwc) following an
analysis similar to Oboukhov’s analysis for scalar transfer in 3D turbulence,
the scalar spectrum is proportional to the spectrum of the cascading quantity,
namely the enstrophy β, and thus
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Sγ (kw, t) ∝
εγ
β
k2
w S (kw, t) ∝ εγ β

−1/3 k−1
w (6.39)

The physics of this spectral distribution of the scalar are covered by a scalar
gradient equation (see Lesieur, 1997, pp. 309, 292, 41 for more detail). The
scalar gradient will be steepened normal to the direction of deformation along
its second principal axis, perpendicular to the weak vorticity braids recon-
necting the large coherent vortices. Thus, these braids will form local scalar
‘fronts’ with high ∂c

∂n . This, in turn, may induce high scalar Laplacians ≈ ∂2 c
∂n2 ,

and hence high scalar molecular diffusion. This scalar-front formation with high
molecular mixing at the interface may be crucial to the large-scale transport
and diffusion in shallow flows.

In the viscous-convective range, where kwd < kw < kwc for Sc > 1, Equa-
tion (6.39) is still valid.

In the inertial-diffusive range for low Schmidt numbers Sc < 1 and kwc <
kw < kwd the scalar spectrum shows a k−7

w cascade. Equation (6.32) already
given for the case of 3D isotropic turbulence, also holds in 2D turbulence. If we
employ an appropriate k−3

w enstrophy spectrum, the scalar spectrum results as

Sγ (kw) ∝ εγ D
−3
m k−4

w S (kw) ∝ εγ D
−3
m β2/3 k−7

w . (6.40)

Secondly, we will assume that the scalar will be forced into the k−5/3
w in-

verse kinetic energy cascade, for the injection wave numbers we thus have
kwi,γ < kwi. The scalar will now cascade to higher wave numbers along a di-

rect k−5/3
w spectral distribution in the inertial-convective range, as shown by

Lesieur & Herring (1985).

6.3 Scales of turbulence

In order to characterize the large-scale low-frequent fluctuations of a turbulent
flow different macro scales of the turbulence field can be imagined.

6.3.1 Macro scales of turbulence

The macro length scale can be understood as the size range `0 of the largest ed-
dies occurring in the flow, and is comparable to the flow scale L. The character-
istic velocity of the largest eddies, i.e. the macro scale of velocity, is u0 = u (`0),
which is of the order of the r.m.s velocity fluctuations σu =

〈
u′2
〉
. The associ-

ated macro time scale follows as τ0 = `0/u0.
A macro length scale associated with the large eddy sizes in the productive

subrange can be defined as (cf. Pope, 2000)

`0 ≡ k3/2

ε
. (6.41)
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Here, the large eddy range is characterized by the TKE k contained in the
high wave numbers, and by its transfer rate, which has to be of order of the
dissipation rate ε (cf. Equation (6.23)). Consequently, the velocity macro scale
is defined as u0 ≡ σu. The macro time scale is then given by τ0 ≡ k3/2/ (ε σu).

Using Eulerian two-point correlations of flow measurements at fixed loca-
tions separated by a distance s we may expect that the correlation between
the measurements will decrease with increasing distance, and finally vanish for
distances larger than a longest distance, smax. This Eulerian measure could be
derived from the correlation coefficient rii given in Section 6.1.1. As another
macro scale related to rii (x, s, t, τ) the Eulerian integral length scale, however,
is not taken equal to the de-correlation length smax, but is defined as

`I,l (t) ≡
∫ ∞

0
r11 (x, s, t, 0) ds (6.42a)

in the longitudinal or main flow direction, and

`I,t (t) ≡
∫ ∞

0
r22 (x, s, t, 0) ds (6.42b)

in the transverse direction. Presuming an unidirectional separation s = [s1, 0, 0]
the corresponding spatial velocity correlation coefficients are

r11 (x, s1, t, 0) =
〈u′ (x, 0)u′ (x + s1, 0)〉〈

u′ (x, 0)2
〉 , and (6.43a)

r22 (x, s1, t, 0) =
〈v′ (x, 0) v′ (x + s1, 0)〉〈

v′ (x, 0)2
〉 (6.43b)

in the longitudinal and transverse flow direction, respectively. `I,l and `I,t are
equivalent to the areas under the curves of the velocity correlation coefficients
r11 and r22. As illustrated in Figure 6.4 a rectangular of equal size is spanned
by r11 (0)·`I,l or by r22 (0)·`I,t, where rii (0) = 1. The integral length scales may
deviate significantly from smax, especially if for large values of s the velocity
correlation coefficients become negative before tending to zero. This is the case
for a periodically fluctuating flow (e.g. for a vortex street-like wake flow), but
the transverse correlation coefficient r22 will also become negative for large s in
isotropic turbulence or in 2D channel flow (Hinze, 1975). Although in general,
the decrease of rii (x, s, t, 0) for large s can be approximated by an exponential
function rii ≈ exp (−c s/`I,i), fluctuating or negative values of rii cannot be
reproduced this way.

In isotropic turbulence the relation between the longitudinal and the trans-
verse integral length scale was found to be (cf. Hinze, 1975, eqs. (3-74),(3-75))

`I,l (t) = 2 `I,t (t) . (6.44)



168 6. Theoretical Background of Turbulence and its Local Description

In the core of a shallow vortex street-like wake flow this relation will increase, as
is obvious e.g. from the auto-correlation coefficients presented in Figures 7.2.
Compare also the longitudinal and transverse integral time scales given in
Table 7.1.

Analogously to the Eulerian integral length scales (6.42), the Eulerian in-
tegral time scale

τI,l (x) ≡
∫ ∞

0
r11 (x, 0, t, τ) dτ (6.45)

can be regarded as a rough approximation for the de-correlation time of the
longitudinal velocity component in the turbulent flow. Here, the Eulerian auto-
or time correlation coefficient of the longitudinal velocity is

r11 (x, 0, t, τ) =
〈u′ (x, t)u′ (x, t+ τ)〉〈

u′ (x, t)2
〉 . (6.46)

For a homogeneous turbulence field with a constant mean velocity

〈u (x, t)〉 = U in the longitudinal direction, where U �
〈
u′ (x, t)2

〉1/2
= σu,

we can assume (i.e. Taylor’s “frozen cloud” hypothesis) that x = U t and e.g.

∂

∂t
= −U

∂

∂x
. (6.47)

If (6.47) holds15, then a simple relation between the longitudinal integral time
and length scales can be given as (cf. Hinze, 1975, pp. 46)

`I,l = U τI,l . (6.48)

6.3.2 Micro scales of turbulence

From the Eulerian velocity correlation coefficients also small length scales have
been derived in order to characterize the size of the small eddies in the tur-
bulence field. The definition of micro-length scales based on correlation coeffi-
cients of the turbulent flow was first presented by Taylor (1935), to his honor
such scales are called Taylor micro scales of turbulence. A consistent theoretical
review was presented, for instance, by Hinze (1975).

The longitudinal velocity correlation coefficient r11 (x, s, t, 0) can be ex-
panded in a Taylor series about s = 0 as

15 It still has to be clarified, for which conditions Taylor’s hypothesis is valid in double
shear flows like shallow wakes. Obviously (e.g. from turbulence intensity, TKE, or simply
variance of fluctuation σu

2 = f (x)), the horizontal turbulence field in the near–field
(x/D ≤ 30) of a shallow wake flow is neither homogeneous nor isotropic. Hence, the
Eulerian correlation coefficient rii (x, s, t, 0) between two points located along the wake
centerline can not simply be translated into an auto-correlation coefficient rii (x, 0, t, τ)
at a single point. We will address this aspect in more detail in Chapter 7.



6.3 Scales of turbulence 169

r11 (x, s, 0) = 1 +
1

2!
s2
[
∂2r11

∂s2

]

s=0

+
1

4!
s4
[
∂4r11

∂s4

]

s=0

+ · · ·

For very small values of s r11 approaches a parabolic function fp (s) with its
vertex at s = 0, thus

lim
s→0

(r11) ≈ fp (s) = 1 − s2

`λl
2 . (6.49)

Similar to the Eulerian time correlation shown in Figure 6.4, the osculating
parabola intersects the s–axis at s = `λl.

Hence, the longitudinal Taylor micro-scale is given by

1

`2λl
= − 1

2

[
∂2r11

∂s2

]

s=0

. (6.50a)

`λl is also related to velocity derivatives (cf. Hinze, 1975; Pope, 2000) as

1

`2λl
=

1

2σ2
u

〈[
∂u′

∂s

]2

s=0

〉
. (6.50b)

Similarly, the transverse Taylor micro-scale is given by

1

`2λt
= − 1

2

[
∂2r22

∂s2

]

s=0

, and (6.51a)

1

`2λt
=

1

2σ2
v

〈[
∂v′

∂s

]2

s=0

〉
. (6.51b)

Concerning the physical meaning of the Taylor micro length scale Hinze
(1975) argued in agreement with Taylor (1935) that `λ should be regarded
as the average size of the energy dissipating eddies, and he therefore called `λ
the dissipation scale. However, Tennekes & Lumley (1977) objected

“that the length scale [`λl] was found by taking [σu] as a velocity scale.
[...] The Taylor microscale is thus not a characteristic length of the
strain-rate field and does not represent any group of eddy sizes in which
dissipative effects are strong. It is not a dissipative scale, because it is
defined with the assistance of a velocity scale [namely σu] which is not
relevant for the dissipative eddies. Even though, [`λl] is used frequently
because the estimate [sij ∼ σu/`λl] is often convenient.”

Tennekes & Lumley (1977, pp. 67-68)

In isotropic turbulence the relation between the longitudinal and the trans-
verse Taylor length scales is (Hinze, 1975, eq. 3-16)

`λl =
√

2 `λt . (6.52)
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Figure 6.4. From the Eulerian velocity correlation coefficients rii characteristic scales of
turbulence have been derived. The Taylor micro timescale τλ, the integral time scale τI,l, and
the de-correlation time scale Tmax,l are sketched conceptually with the longitudinal velocity
auto-correlation coefficient r11 (x, 0, t, τ). Corresponding length scales may be calculated
from the velocity correlation coefficients rii (x, s, t, 0). (after Albrecht et al., 2003)

Using the approximation of the dissipation rate in isotropic turbulence ε =

15ν
〈
(∂u′/∂x)2

〉
(Equation (6.22)) together with (6.50b) and (6.52), the dis-

sipation rate can be related to the transverse Taylor length scale and to the
variance of the turbulent velocity fluctuations as

ε = 15ν
σ2
u

`λl
. (6.53)

Employing the Eulerian time correlation coefficient (6.46) the Taylor micro
timescale τλ has been defined analogously to the Taylor micro length scales by

lim
τ→0

(r11) ≈ fp (τ) = 1 − τ2

τλ2
. (6.54)

approximating a parabola p (τ) to r11 (x, 0, t, τ) with its vertex at τ = 0, as
illustrated in Figure 6.4.

1

τλ2
= − 1

2

[
∂2r11 (τ)

∂τ2

]

τ=0

=
1

2σ2
u

〈[
∂u′

∂t

]2

τ=0

〉
. (6.55)

The Eulerian time scale τλ may be regarded a measure of the most rapid
changes that occur in the fluctuating longitudinal velocity component u′ (t).
Hence, τλ is not a dissipative time scale, since the definition of τλ involves σu
as a velocity scale that is not characteristic for the smallest eddies in the flow.
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With the assistance of Taylor’s “frozen turbulence” hypothesis, and thus
with all restrictions associated with this hypothesis, a simple relation between
the Taylor micro scales of length and time is given as

`λl = U τλ . (6.56)

The argument is similar to that for the relation of the integral scales of length
and time (Equation (6.48)). However, for the Taylor micro scales, which may
fall into the wave number range of local isotropic turbulence, the “frozen tur-
bulence” hypothesis might well be applicable also in shallow shear flows that
are inhomogeneous at larger flow scales.

In 1941 A. N. Kolmogorov identified the smallest scales of turbulence
describing the range of eddies which are affected by viscosity leading to dissipa-
tion of the turbulent kinetic energy introduced at the largest scales to the flow.
The Kolmogorov scales of turbulence have already been used in Section 6.2.2 to
describe the processes of the energy cascade. Since in the range of the smallest
eddies, in the dissipation range, TKE is dissipated at a rate ε due to viscosity ν,
the dissipative scales of turbulence will solely depend on these two quantities.
From dimensional reasons the dissipative micro scales, the Kolmogorov scales
of length, velocity, and time, result as

`η ≡
(
ν3

ε

)1/4

, (6.57a)

uη ≡ (εν)1/4 , (6.57b)

τη ≡
(ν
ε

)1/2
, (6.57c)

respectively. The Reynolds number composed of the Kolmogorov micro scales
is unity, Reη = uη `η/ν = 1. In the wave number range in which Reη =
O (1) viscosity prevails leading to dissipation. Also the velocity gradient for

the dissipative eddies is consistently given by uη
`η

=
(

ε ν
ν3/ε

)1/4
= 1

τη
.

Briefly recapitulating the concept of the energy cascade says that TKE is
produced by eddies of the largest scale at a production rate P (`0), transferred
inviscidly to smaller and smaller eddies at a transfer rate T (`), and finally
dissipated by viscous effects at the smallest eddy scale with a dissipation rate
ε (`η), thus (Equation (6.23))

P (`0) ≈ T (`) ≈ ε (`η) .

The largest eddies carry TKE of order u2
0 and have a time scale of τ0 = `0/u0.

Hence, energy is passed by the largest eddies to smaller ones at a rate
T ∝ u2

0/τ0 = u3
0/`0. From (6.23) the dissipation rate scales as ε ∝ u3

0/`0,
and is independent of ν. Defining a Reynolds number as Re`0 = u0 `0/ν using
characteristic macro turbulence scales, the scale relations between the Kol-
mogorov micro scales and the macro scales of turbulence are found to be (e.g.
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Tennekes & Lumley, 1977)

`η/`0 ∼ Re
−3/4
`0

, (6.58a)

uη/u0 ∼ Re
−1/4
`0

, (6.58b)

τη/τ0 ∼ Re
−1/2
`0

. (6.58c)

Evidently, for increasing Re`0 the range of the energy cascade will widen, e.g.
given fixed macro scales like constant integral scales, the Kolmogorov micro
scales will decrease.

In order to compare the Kolmogorov, Taylor, and macro length scales we
can define a macro–scale turbulence Reynolds number using the macro length
scale `0 (Equation (6.41)) as

Re`0 ≡ k1/2`0
ν

=
k2

ε ν
, (6.59a)

and a Taylor–scale turbulence Reynolds number

Reλl ≡
σu `λl
ν

. (6.59b)

The relations between the micro and macro length scales then become

`λl
`0

=
√

10 Re
−1/2
`0

=
15

(3/2)3/2
Re−1

λl , (6.60a)

`η
`0

= Re
−3/4
`0

, and (6.60b)

`λl
`η

=
√

10 Re
1/4
`0

=
4
√

15 Re
1/2
λl . (6.60c)

Finally, it should be noticed that—using (6.53)—the Taylor time scale correctly
represents the time scale of the dissipative eddies described by Kolmogorov’s
micro time scale,

τλ =
`λl
σu

=
(
15
ν

ε

)1/2
=

√
15 τη . (6.61)

6.3.3 Micro scales of scalar fluctuations

In a steady homogeneous shear flow, the equation governing the dynamics of
the scalar (e.g. a small excess temperature) variance

〈
ϑ′ 2
〉

reduces to

−
〈
ϑ′ ui

〉 ∂Θ
∂xi

= Dm

〈
∂ϑ′

∂xi
· ∂ϑ

′

∂xi

〉
, (6.62)

which expresses that the gradient production of
〈
ϑ′ 2
〉

is balanced by the molec-
ular diffusion (cf. Tennekes & Lumley, 1977, p. 95). The Taylor micro scale
for the scalar fluctuations `λγ can now be defined as
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〈
∂ϑ′

∂x1
· ∂ϑ

′

∂x1

〉
≡ 2

〈
ϑ′2
〉

`2λγ
. (6.63)

Assuming that in steady flow the production and dissipation are of the
same order of magnitude (cf. Equation (6.62)), we can estimate `λγ following
an order-of-magnitude argument. This leads to the relation

`λγ
`λ

≡ C

(
Dm

ν

)1/2

=
C√
Sc

, (6.64)

where C is a constant16. Just like `λ, also `λγ is an artificial scale without an
exact physical equivalent.

Analogously to Kolmogorov’s micro length scale `η for velocity fluctuations,
a micro length scale `ηγ can be introduced to define the typical eddy size, at
which molecular diffusion begins to predominate the convective transport of
scalar variance along the wave number space. In the common case of Sc > 1
or Pr > 1, i.e. ν > Dm, the scalar micro scale ληγ is given with respect to
Kolmogorov’s length scale by (cf. Batchelor, 1959)

`ηγ
`η

=

(
Dm

ν

)1/2

= Sc−1/2. (6.65)

Since for the Kolmogorov length scale `η =
(
ν3

ε

)1/4
, the Batchelor scale of

scalar fluctuation becomes

`ηγ = D1/2
m

(ν
ε

)1/4
. (6.66)

If on the contrary Sc � 1, ν < Dm and `η < `ηγ , the molecular diffusivity
dissipates the scalar fluctuations at eddy sizes `ηγ > ` > `η, where the energy
cascade still exhibits an inviscid behavior. Thus, `ηγ is independent of ν. The
scalar micro scale then becomes (cf. Corrsin, 1951)

`ηγ =

(
D3
m

ε

)1/4

and formally
`ηγ
`η

=

(
Dm

ν

)3/4

= Sc−3/4. (6.67)

16 O (C) = 1, cf. Corrsin (1951)
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7. Analysis of LDV-LIF Measurements in Wake

Flows

7.1 Time series analysis of wake flow measurements

7.1.1 Time histories of LDV-LIF measurements

Shallow turbulent flows are often characterized by a velocity field that reveals
a significant low-frequent periodically fluctuating part. Instead of a Reynolds
decomposition (7.1a) it is often more appropriate to use a “two–length–scale
decomposition”. Either a double decomposition (7.1b) into a low-frequent pe-
riodic and a random turbulent flow field, or a triple decomposition (7.1c) into
mean, periodic, and random components can be defined that for the longitu-
dinal velocity component are given by (cf. also Equations (10.4), (10.5))

u (t) = U + u′ = 〈u〉 + (u− 〈u〉) (7.1a)

= up + ur = {u} + (u− {u}) (7.1b)

= U + u?p + ur = 〈u〉 + {u− 〈u〉}
+(u− 〈u〉 − {u− 〈u〉}) . (7.1c)

Here, angle brackets 〈 〉 denote time or ensemble averages. Curly brackets { }
denote different kinds of filters employed to distinguish the low-frequent part
of a signal. In Section 10.2.3 we will discuss aspects of a “two–length–scale
decomposition” of wake flow fields in more detail, as we will also employ double-
and triple-decomposed fields of velocity and mass extensively throughout Part
III of this study.

The double–decomposition of LDV and LIF data is illustrated in Figure 7.1
by time histories of the horizontal velocity components u and v and of the
mass concentration c, measured at the centerline of wake flows at about two
thirds of the water depth. Figure 7.1(a) shows data obtained at x/D = 4 down-
stream of a cylindrical obstacle in a vortex street-like wake (measurement series
27_vs07). The passage of counter-rotating large-scale vortices alternatingly
shed from both sides of the cylinder can be observed in distinct low-frequent
fluctuations of the velocity and mass signals that reveal a strong periodicity
with an almost constant cycle period. Such a prominent periodicity is a char-
acteristic feature of the VS stability class of shallow wakes. In order to extract
the strongly periodic part of the signals the data is conditionally re-sampled
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(a) Vortex street-like wake flow (S = 0.07)
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(b) Unsteady bubble wake flow (S = 0.25)

Figure 7.1. Time-resolved histories of measured u and v components of the flow velocity
(upper plot) and of the mass concentration (lower plot) have been obtained at the centerline
of shallow wake flows of the stability classes VS (Figure (a), series 27_vs07, x/D = 4) and
UB (Figure (b), series 17_ub25, x/D = 3). In order to double-decompose the data into its
large-scale coherent and small-scale random flow fields different strategies have been applied.
(a) Making use of the strong periodicity of VS wakes a phase-resolve averaging procedure
based on a mean cycle period has been performed. – (b) The slowly fluctuating parts of
the time-resolved data have been identified from fitting a polynomial of order 2 in a moving
window that was approximately a quarter cycle period wide.
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employing a phase–resolved averaging procedure. Based on the mean cycle pe-
riod TP of the process the individual measurements are associated to their
appropriate intervals or ‘slots’ φi of the phase time. The mean cycle period of
the vortex street-like wake flow—spanning a full shedding cycle of two counter-
rotating vortices—is obtained from the auto-correlation coefficient Rvv (τ) of
the transverse velocity component, as discussed in Section 7.1.2. In order to
represent slight variations in the cycle period that will occur for increasing
values of the wake stability parameter S, the phase–resolved average can also
be based on the individual cycle periods of the flow (cf. Section 10.1.2).

A different approach to extract the large-scale flow field from the time-
resolved data is illustrated in Figure 7.1(b) taken from an unsteady bubble
wake (measurement series 17_ub25) at x/D = 3. In contrast to vortex street-
like shallow wake flows, in UB wakes the periodicity of the large-scale mo-
tion is weaker regarding both variability and significance of the periodicity.
Though large-scale vortical structures are present also in wake flows of UB
stability class, theses structures separate more irregularly, and they are less
significant, e.g. they contain less kinetic energy and vorticity (both in total
and in maximum values). Albeit there is a wealth of sophisticated filtering
techniques available, we decided to employ an interpolation scheme to identify
the low-frequent part of the signal. To the velocity measurement data, already
re-sampled with equal time intervals, a moving time window with a width of
approximately TP /4—and half as wide for the mass concentration signal—was
applied.1 A second order polynomial was centrally fitted to the time-resolved
data in the window, the interpolated low-frequent data can be regarded as an
estimate for the large-scale motion of the flow field.

Irrespective of the mode of double-decomposition, some properties of the de-
composed flow fields have to be ascertained. As for a Reynolds-decomposition,
for the average of the fluctuations

〈ur,i〉 = 0 (7.2a)

has to hold. This also applies to the large-scale fluctuations for a triple-
decomposition,

〈
u∗p,i
〉

= 0 . (7.2b)

Consequently, for double-decomposed data, we must have

〈up,i〉 = U +
〈
u∗p,i
〉

= U . (7.2c)

Since we assume the large-scale coherent and the small-scale turbulent flow
fields to be completely de-correlated, thus

1 Lacking a distinct cycle period, a characteristic macro time scale T = 1/f0 has been
estimated from an initial wake Strouhal number St = D f0/U ≈ 0.2, though St slightly
depends on S.
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〈
u∗p,i ur,i

〉
= 0 . (7.2d)

Whereas the presuppositions (7.2a), (7.2b), and (7.2c) for flow field decom-
position are inherently met for interpolation algorithms of arbitrary order—also
of 0th and of 2nd order—as well as for phase–resolved averages, the assump-
tion of complete de-correlation (7.2d) has to be evidenced separately. For the
schemes, employed for the decomposition of the point-wise measurement data
in this study, the inter-scale cross-variances are always much smaller than the
appropriate whole-scale variances, i.e.

〈
u∗p,i ur,i

〉

〈ui2〉
= O

(
10−3

)
, and

〈
c∗p cr

〉

〈c2〉 = O
(
10−3

)
.

In order for Taylor’s hypothesis of ‘frozen turbulence’ to hold also if large-
scale quasi-2D vortical structures are present, we should have

〈
u2
r,i

〉
/
〈
u2
p,i

〉
� 1 . (7.3)

Thus, the TKE of the small-scale turbulent fluctuation should be much smaller
than the kinetic energy contained in the large-scale coherent flow field. Since,
obviously, this in general will not be valid for the large-scale 2D motions with

respect to the mean flow,
〈
u∗ 2
p,i

〉
/U2

i , the applicability of Taylor’s hypothesis

to quasi-2D turbulence can not be approved a priori.
In the present decomposed measurements the variance of the small-scale

fluctuations amount to less than 3% of the variance of the coherent fluctua-
tions for the transverse velocity component of a VS wake,

〈
v2
r

〉
/
〈
v2
p

〉
< 0.03,

but are ten times larger for
〈
u2
r

〉
/
〈
u2
p

〉
and for

〈
c2r
〉
/
〈
c2p
〉
. As the large-scale

vortical structures become less pronounced in UB and SB wakes, the 3D ran-
dom fluctuations are of level or dominating importance in these cases of wake
instability.

7.1.2 Correlation coefficients of measured data

From the LDV-LIF data the Eulerian auto- and cross-correlation coefficients
rφφ (τ) have been calculated for the horizontal velocity components u and
v and for the mass concentration c. An appropriate discretized formulation
rφφ (s Mt), given by Equation (6.7) normalized by Rφφ (0) = σ2

φφ, was applied
to the discrete data—re-sampled at equal time intervals.

Point-wise measurements have been conducted along the centerline of shal-
low wakes of different stability classes. Vortex street-like cylinder wakes show
a definite periodicity in the correlation coefficients of all measured flow compo-
nents. Figure 7.2 illustrates this for data from a VS wake with an initial stability
parameter S = 0.07 (measurement series 25_vs07). The data was obtained at
the downstream positions x/D = 2, 5, 15, and 25 (or equivalently x/h = 20, 50,
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(d) x/D = 25

Figure 7.2. Correlation coefficients Rφφ (τi) of the horizontal velocity components u and
v (full and dashed lines, upper plots) and of the mass concentration c (lower plots) have
been computed using the discrete formulation (6.7), as illustrated for a VS wake flow (series
25_vs07). Measurements were taken along the wake centerline at x/D = 2, 5, 15, and 25.
The time lag was limited to τ/T ≤ 0.3.
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Figure 7.3. For a stabilized wake (series
18_sb51) the correlation coefficients Rφφ (τi) of
the horizontal velocity components u and v (up-
per plot) and of the mass concentration c (lower
plot) have been computed from measurement
data obtained at x/D = 2.5 (S = 0.51 indicating
a lower–limit steady bubble (SB) stability class
close to the UB class).

150, and 250) along the centerline of the wake, corresponding to Figures 7.2(a)
to 7.2(d). Correlation coefficients have been calculated for time lags τ/T ≤ 0.3
to visualize the periodicity in rφφ (τ). The correlation coefficients depicted in
the upper plots show very strong correlation in the transverse velocity (dashed
lines) for time lags corresponding to full cycle periods τ = nTP—reaching
from almost 1 near the obstacle to about 0.4 far downstream—, but lower and
rapidly dampened values of ruu (τ) in the longitudinal flow direction (full lines).
For x/D = 2 and 5 the doubled frequency of ruu indicates the existence of the
counter-rotating vortices (cf. Figures 7.2(a) and 7.2(b)). As the large-scale ed-
dies decay, the wake stabilizes towards a purely meandering movement with
the same frequencies in ruu and rvv, finally without significant periodic longitu-
dinal velocity fluctuations (cf. Figures 7.2(c) and 7.2(d)).2 The same behavior
is evident more clearly in Figure 7.3 displaying the correlation of the velocity
components in a steady bubble wake (series 18_sb51, x/D = 2.5). This mean-
dering movement indicates that for a stability parameter of S = 0.51 the wake
is not yet fully stabilized, but shows fluctuations in the flow field induced by
the recirculation bubble attached to the obstacle.

Since tracer mass was introduced into both the left and right cylinder
boundary layers, vortices shed from both sides get mass-loaded. As the ed-

2 A description of the field-wise topography of vortex street-like shallow wakes will be given
in Part III of this work. At this point, we want to state without prove that the meandering
flow is not restricted to the core of the wake (e.g. by ‘widening the gap’ between the
two rows of vortices) but is the result and remains of the complete disintegration of the
coherent vortical motion.
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dies were advected downstream forming the rows of counter-rotating eddies
in a VS wake, mass was laterally mixed and symmetrically distributed with
respect to the wake axis. Hence, the correlation coefficient of the mass con-
centration rcc (τ) (depicted in the lower plots) is related to rvv of the trans-
verse velocity component which represent the development of the individual
large-scale eddies, and thus—combining two eddies—is related also to the full
shedding cycle of a vortex street. As the individual LCS decay away, and the
wake becomes more stable exhibiting a large-scale meandering motion, also
the large-scale variations of the longitudinal velocity component cease, and
ruu remains uncorrelated. Because of the high Schmidt number Sc � 1, at
this stage the injected mass remains organized into patches resulting from the
former LCS development, and is subjected to mainly small-scale turbulence
while advected downstream. As a consequence of the higher momentum diffu-
sivity ν compared to the mass diffusivity Dm in these flow configurations, c
remains correlated much farther downstream than u. Note that the periodicity
of rcc shifts toward the cycle period of the full shedding cycle captured by rvv
as a result of the straining processes in the wake far-field (cf. Part III, esp.
Section 10.2). Again, the stabilized behavior of a transitional wake between
the stability classes UB and SB is illustrated in Figure 7.3 from data taken at
x/D = 2.5 immediately downstream of the recirculation bubble.

7.1.3 Scales of turbulence

Integral scales of time and length. The Eulerian integral time scale τI has
been defined (Equation 6.45) using the longitudinal Eulerian auto-correlation
coefficient ruu (x, 0, t, τ) (Equation (6.46)) as

τI (t) ≡ lim
τ ′→∞

∫ τ ′

0
ruu (t, τ) dτ .

τI can be calculated directly from time series data, e.g. from LDV measure-
ments of u (t), without the assistance of Taylor’s ‘frozen turbulence’ hypothesis.
Thus, the presupposition of homogeneous turbulence is not required in order
to obtain the integral time scale.

In the shallow wake of a single obstacle the time scales of the periodic–
coherent and of the random–turbulent flow field differ by several orders of
magnitude (v. Carmer et al., 2000; v. Carmer & Jirka, 2001). Hence,
a triple decomposition (7.1c) can be applied to the time series of the ve-
locity data. Since the periodic and the random fluctuations are completely
de-correlated, as shown in Section 7.1.1, i.e.

〈
u?p ur

〉
= 0, the Eulerian auto-

correlation coefficient (6.46) becomes

ruu (t, τ) =
〈u′ (t) u′ (t+ τ)〉

〈u′2〉
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=

〈[
u?p (t) + ur (t)

]
·
[
u?p (t+ τ) + ur (t+ τ)

]〉
〈[
u?p + ur

]2〉

=

〈
u?p (t) u?p (t+ τ)

〉
+ 〈ur (t) ur (t+ τ)〉〈

u?2p
〉

+ 〈u2
r〉

(7.4)

Inserting (7.4) into (6.45) results in a decomposition of the integral time scale
into coherent and incoherent parts,

τI (t) = lim
τ ′→∞

∫ τ ′

0

〈
u?p (t)u?p (t+ τ)

〉

〈u′2〉 dτ

+ lim
τ ′→∞

∫ τ ′

0

〈ur (t)ur (t+ τ)〉
〈u′2〉 dτ . (7.5)

Since the correlation coefficient of the periodic velocity component〈
u?p (t)u?p (t+ τ)

〉
/
〈
u′2
〉

does not converge, but oscillates around 0 in the in-

terval
[
− σ2

up/σ
2
u; + σ2

up/σ
2
u

]
, the integral time scale of the periodic component

vanishes (first term on the right-hand-side of (7.5)). Hence, τI per definitionem
contains the randomly fluctuating part of the velocity field only, and is there-
fore not suited to characterize the coherent velocity field. The cycle period TP
of the coherent motion of the flow field appears to be an appropriate macro
time scale for the low-frequent periodic fluctuations. As a characteristic feature
of shallow quasi-2D turbulent flows the scale duality is very prominent also in
the different macro time scales, i.e. τI/TP � 1. This has recently been reported
by Rummel et al. (2004) also for grid-generated quasi-2D turbulence.

Consequently, periodic motions that are a vital part of most shallow 2D
shear flows will not be represented with the Eulerian integral time scale τI .
Only the random 3D turbulence field can be characterized by τI , as can also
be seen from the data presented in Table 7.1, page 184.

In order to compute the longitudinal integral time scale, which is given by
the semi-infinite integral of ruu, τI,l can by split into an finite integral up to
an upper limit of τ = TP and into an remaining semi-infinite integral. Hence,
Equation (6.45) becomes

τI,l =

∫ TP

0
ruu (τ) dτ + lim

τ ′→∞

∫ τ ′

TP

ruu (τ) dτ . (7.6)

Because of the strong periodicity of unstable shallow wake flows, and thus of
the appropriate ruu, the unbounded integral will not converge. As a further
consequence of the de-correlation of the large-scale coherent and the small-
scale random flow fields, the second integral term of (7.6) does not contribute
to τI,l, but varies around 0. This is due to the fact that the large-scale coherent
motion will not contribute to the integral time scale (cf. Equation (7.5)) and
the semi-infinite integral term solely represents correlation coefficients obtained
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Figure 7.4. Eulerian integral time scales have been computed from the u, v, and c data
obtained in a vortex street-like shallow wake (series 25_vs07) at different downstream posi-
tions along the wake centerline. The resulting longitudinal, transverse, and diffusive integral
time scales τI,l, τI,t, and τI,c are denoted by n, s, and l, respectively. Whereas τI,l in-
creases in the near-wake, then gradually decreases toward the 3D random turbulent integral
time scale, the transverse integral time scale remains a constant with a surprisingly small
value. Contrarily, the diffusive integral time scale τI,c exponentially grows even in the wake
far-field.

from the coherent flow field. Only time lags τ < TP up to the full cycle period,
contained in the first integral term, have to be evaluated for the computation of
the integral time scale, since the 3D random turbulent fluctuations are limited
to time scales much smaller than the time scale TP of the quasi-2D coherent
motion.

The downstream development of the integral time scales is illustrated in
Figure 7.4. The longitudinal, transverse, and diffusive integral time scales τI,l,
τI,t, and τI,c—denoted by n, s, and l, respectively—have been computed
from the u, v, and c data obtained in a vortex street-like shallow wake (se-
ries 25_vs07) at different downstream positions along the wake centerline. In
general, values for τI,l are slightly higher than the corresponding values of the
ambient bottom-shear flow, values of τI,t are lower3 than the corresponding
ambient values. Both, τI,l and τI,t, can be regarded as roughly independent of
x/D. On the contrary, the diffusive integral time scale τI,c shows a continuous
exponential growth law with downstream distance. The increase of τI,c, rang-
ing over two orders of magnitude, approaches values of the order of the cycle
period TP . Because of the high Schmidt number of the mass solution, the mass

3 The transverse integral time scale τI,t obtained from our measurements in shallow wake
flows is of the order of the data re-sampling time interval of 0.01 s. For a thorough
discussion of τI,t it is necessary to evaluate data histories with higher temporal resolution.
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will still advect and diffuse in the equilibrium shear flow, even when the TKE
of large-scale eddies will have already been dissipated, and the LCS will have
already disintegrated.

The integral time scales of the ambient shear flow, as averaged over all
measurements at the corresponding downstream positions outside the wake,
are τI,l ≈ 0.12 s, and τI,t ≈ 0.08 s for measurement series 25_vs07 presented in
Figure 7.4. Since there is substantial variability in the averaged τI , the general
relation of τI,l = 2 τI,t (cf. also the relation (6.44) of the integral length scales)
in homogeneous turbulence is not contradicted. Assuming local homogeneity in
the range of small-scale 3D turbulence, Taylor’s hypothesis can be employed to
obtain an Eulerian integral length scale for the 3D turbulence, `I,l = U τI,l =
20 mm. The longitudinal integral length scale is of the order of the water
depth, `I,l = O (h). Hence, the integral scales of time and length, τI,l and
`I,l, consistently represent the range of the large eddies of the bottom–induced
turbulence.

Macro scales of time and length. An appropriate macro time scale τ0
which also covers the periodic part of the flow field is given by the low-frequent
periodicity TP of the flow. From the longitudinal auto-correlation coefficient
ruu (τ) the longitudinal macro time scale τ0,l is obtained as the time of its
first local maximum correlation, or as the inverse of its oscillation frequency
(cf. e.g. Figure 7.2). Averaged values of the macro time scale, as evaluated
from each series of LDV measurements, are presented in Table 7.1 together
with the integral time scales for selected measurement series. Note that also
τ0,l does not vary with the downstream position for the unstable wake classes
suggesting that the size of the largest vortical structures in the flow will not

Table 7.1. Macro and integral flow scales have been evaluated from LDV data in flows
of different wake instability classes. Values of the macro time scale τ0 have been evaluated
from the periodicity of rvv, the appropriate length scale values `0 have been obtained with a
coordinate transformation t = Ua x. Integral time scales τI were computed using (6.45), the
corresponding `I were deduced employing Taylor’s hypothesis.

series macro scales integral scales

time length time length

τ0,l `0,l τI,l τI,t τI,c `I,l `I,t `I,c

[s] [mm] [s] [s] [s] [mm] [mm] [mm]

18_vs06 4.99 812 0.202 0.05 0.023 32.9 8.1 3.7

25_vs07b 6.08 990 0.201 0.014 0.078 32.7 2.3 12.7

25_vs07c 7.96 1296 0.117 0.042 0.033 19.0 6.8 5.4

17_ub25 17.23 2805 0.241 0.049 0.032 39.2 8.0 5.2

18_sb51 21.4 3483 0.176 0.03 0.012 28.6 4.9 2.0
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Figure 7.5. The macro time scale τ0 = TP of cyclic wake flows is usually normalized using
the upstream flow velocity Uamb and the cylinder diameter D resulting in the Strouhal num-
ber St = D/ (TP Uamb). St depends on the typology of the wake, which in shallow wake flows
is primarily related to the stability parameter S = cf D/h. Values of TP have been obtained
from rvv of our LDV measurements (full symbols), and from flow visualizations (empty sym-
bols, Chen & Jirka, 1995). A linear approximation proposed by Chen & Jirka (1995) is
indicated by the dashed line. If the macro length scale of the flow can be given as `0 = τ0 Uamb,
then St−1 represents the non-dimensional macro length scale `0/D.

grow while advected with the flow. Hence, merging processes characteristically
associated with 2D turbulence do not occur in shallow wake flows, as will also
be evidenced from the energy spectral distributions. In Part III we will explain
this behavior from the topography of shallow wake flows.

The non-dimensional flow number characterizing the shedding process
also from single cylindrical obstacles is the Strouhal number given by St =
D/ (TP U). In unbounded cylinder wake flows the Strouhal number is usually
depending on the cylinder Reynolds number ReD, which in turn has been
associated to the detail of the flow phenomenon. For instance, the v. Kár-
mán vortex street emerging from laminar wake boundary layers is related
to 80 < ReD < 200, 000. For more detail on unbounded cylinder wakes the
reader is referred to various fluid-mechanical text books, to the monograph of
Zdravkovich (1997), or to a review paper like Chen (1973). Also for cylinder
wakes in shallow shear flow the frequency of the global instability depends on
the specific typology of the wake. In contrast to unbounded wakes, the main
parameter characterizing the flow behavior of a shallow wake is the wake sta-
bility number S = cf D/h that can be used to categorize the different shallow
wake instability classes (VS, UB, and SB). The stability parameter in turn
depends both on ReD and Reh, i.e. S = f (ReD, Reh) (see Section 5.2.2, esp.
Figure 5.4 on page 131). For a vortex street-like shallow wake, S → 0, the
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stability parameter becomes Reh–invariant, i.e. the wake typology approaches
that of unbounded wakes depending solely on ReD.

Figure 7.5 displays the Strouhal number of shallow wake flows of differ-
ent wake instability, and thus, of different S. The data was evaluated from
our LDV measurements (full symbols), and from visualizations as reported by
Chen & Jirka (1995)(empty symbols). A dashed line indicates a linear ap-
proximation proposed by Chen & Jirka (1995) that is roughly a constant
St ≈ 0.21 for VS wakes with S < 0.2, and linearly increases in the range of UB
wakes up to St (S = 0.55) ≈ 0.42. Note that we observe a large variability of St
even for similar S which can not be accredited to measurement uncertainties,
but may be considered the result of small initial perturbations up-stream of or
immediately at the cylinder, or addressed to a ReD–dependence.

In order to obtain the corresponding macro length scale `0 we can employ
a coordinate transformation from a Eulerian frame to a Lagrangian frame
moving with the mean advection speed of the largest structures comprising
the coherent flow field.4 Here, we use the ambient flow velocity Uamb as an
advection speed—an assumption that is asymptotically correct for the wake
far-field. The values of `0 are much larger than the water depth and even larger
than the cylinder diameter (i.e. the initial wake width), thus `0 > D > h. The
relative macro length scale `0/D ranges from about 5 in vortex street-like
shallow wakes down to about 2.5 in SB wakes. Since `0/D = U τ0/D = St−1,
the remarks on the Strouhal number given above also apply to the macro length
scale. If we would use the local mean flow velocity 〈u〉 instead of the ambient
flow velocity as a characteristic velocity, then the resulting macro length could
be regarded as the ‘wave’ length of the periodic flow field.

Micro scales of turbulence. In Section 6.3 also well-established micro scales
of turbulence have been introduced. Though, in general, they are hardly ca-
pable of measurement in 3D turbulent flow, good estimates have been given
for homogeneous turbulence. These estimates relate the micro length scales to
a macro length scale `0 of the flow using a macro scale turbulence Reynolds
number Re`0 = k1/2 `0/ν, (6.59a). Then, the Taylor micro length `λl, and the
Kolmogorov micro length `η are given by Equations (6.60a) and (6.60b), re-
spectively. In the case of a shallow wake flow, susceptible to a two–length–scale
decomposition, we considered the small-scale random turbulent flow to be cru-
cial for the estimation of Re`0 assuming locally isotropic turbulence in the high
wave-number range. Then, the macro turbulence scales of length and velocity
became `0 = h and k = 1/2 ((2.3 + 1.63 + 1.27) /2.3)2

〈
u2
r

〉
= 2.56

〈
u2
r

〉
(cf.

Equation (5.8)). Additionally, we employed an estimate for the turbulence in-

4 Changing from a fixed to a moving reference frame just means a transition from a temporal
to a spatial domain. This does not involve Taylor’s hypothesis of ‘frozen turbulence’.
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tensity of TI =
√

〈u2
r〉/U = 0.05.5 The Batchelor micro length scale of scalar

fluctuations `ηγ delineating the smallest diffusive structures of the flow has
been defined by (6.66) for high Schmidt-number flows, i.e. ν � Dm. Then, `ηγ
is related to the Kolmogorov micro length scale through the Schmidt number
Sc = ν/Dm as `ηγ = `η Sc

−1/2, (6.65). Assuming Sc ≈ 1, 500 for the flows
under consideration, `ηγ is given in Table 7.2 for various wake flows together
with the corresponding micro length scales of velocity fluctuations. While the
diffusive micro length `ηγ is of the order of 10 µm, the Kolmogorov scale ranges
at about 0.6 mm, whereas the Taylor micro scale amounts to 20% to 25% of
the water depth.

In order to obtain micro time scales Taylor’s ‘frozen turbulence’ hypothesis
has been applied to the appropriate micro length scales. Table 7.2 lists the
appropriate values of τγl, τη, and τηγ . The Taylor micro time is in the range of
40 ms to 50 ms, the Kolmogorov time scale is a full order of magnitude smaller,
and Batchelor’s diffusive time scale is estimated to about 100 µs. With respect
to both the temporal and the spatial resolution the Batchelor scales of mass
fluctuations are not capable of measurement using the present LIF equipment
(cf. also Section 4.2). The dissipative micro scales could have been resolved by
the employed 2D LDV system (cf. Section 4.1 for a spatial definition of the
measurement volume), if a mean sampling rate of twice the highest fluctuation
frequency (i.e. about 400 Hz to 550 Hz) would have been achieved. In the

5 If the macro turbulence scales would be obtained from the full flow field, they would
predominantly represent the large-scale coherent motion, e.g. `0 = U TP and k =
1/2



u2 + v2

�
. Using σu ≈ 0.25U the order of magnitude of the micro length scale es-

timates would remain the same, though values of `λl then would extend the water depth.

Table 7.2. Estimates of micro scales of time and length were calculated for different wake
flow conditions using homogeneous turbulence approximations. The Taylor length scale `λl
and the Kolmogorov dissipative length scale `η were evaluated from (6.60a) and (6.60b),
respectively, using macro turbulence scales characterizing the 3D random turbulent flow.
Batchelor’s diffusive length scale `ηγ was obtained from the high–Schmidt–number approx-
imation (6.65). All corresponding micro time scales were estimated employing Taylor’s hy-
pothesis of ‘frozen turbulence’.

series micro scales

time length

τλ [s] τη [s] τηγ [s] `λ [mm] `η [mm] `ηγ [mm]

18_vs06 0.047 4.8E-03 1.2E-04 6.1 0.63 0.016

25_vs07b 0.039 3.5E-03 9.1E-05 6.4 0.57 0.015

25_vs07c 0.039 3.5E-03 9.1E-05 6.4 0.57 0.015

17_ub25 0.050 5.3E-03 1.4E-04 6.1 0.65 0.017

18_sb51 0.047 4.8E-03 1.2E-04 6.1 0.63 0.016
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Figure 7.6. Production
and decay of normalized
turbulent kinetic energy
along the centerline of
shallow wakes with dif-
ferent instability classes.
(v. Carmer et al., 2001)

present study detailed examinations of the dissipative and diffusive ranges were
not intended, hence, for all measurements a mean sampling rate of 100 Hz was
guaranteed, and the data were re-sampled at this rate. Reliable power spectral
estimates were obtained up to 25 Hz. Finally, albeit not conducted in this study,
using the present LDV data the Taylor micro time scale could be evaluated by
fitting the defining parabola (6.55) to the correlation coefficient ruu for time
lags τ → 0.

7.1.4 Downstream development of coherent and random transport

of momentum and mass

Due to the immense transverse shear at the cylinder a considerable amount
of kinetic energy is extracted from the shallow base flow and transferred to
the fluctuating motion of the wake flow. As the flow advects downstream in
the cylinder wake, the TKE produced at the obstacle is dissipated due to the
bottom-induced vertical shear. In Figure 7.6 the longitudinal development of
the TKE is presented for the different wake stability classes, as reported by
v. Carmer et al. (2001). Following common practice, the horizontal part
of the mean TKE has been non-dimensionalized by the corresponding local

mean kinetic energy, i.e. k+ =
(〈
u′ 2
〉

+
〈
v′ 2
〉)
/
(
〈u〉2 + 〈v〉2

)
. Note that k+

will represent also the total TKE in shallow wake flows dominated by large-
scale horizontal quasi-periodic motion in good approximation, since in such
flows O

(
w′ 2

)
� O

(
u′ 2
)
≤ O

(
v′ 2
)

(cf. also Figure 7.8) and 〈w〉 = 0. Large
symbols denote values obtained at the wake centerline, small symbols denote
ambient flow values outside the wake. The +, ◊, and ∆ symbols indicate shallow
wake flows of the stability classes VS, UB, and SB, respectively.
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Compared to the ambient flow the k+ shows significantly higher values
within the different wakes. The dissipation of TKE follows a power-law decay,
i.e. k+ ∝ x−n. The level of the ambient TKE is reached after approximately
xe = 20 cylinder diameters in the case of VS instability (S = 0.07), which
is significantly faster than for unbounded cylinder wakes. For an UB class
wake (S = 0.25) the re-stabilization of the flow occurs after about xe = 10D,
and for S = 0.51 (UB-SB transition of wake instability class) at x/D = 5.5
the additional TKE of the flow is dissipated almost completely. Following
Chen & Jirka (1995), the momentum recovery distance xe may be defined as
the distance for which the momentum deficitMs of the mean flow has decreased
to 1/e of the initial momentum deficit Ms0. The decrease of the additional TKE
at the wake center line due to bottom friction–induced dissipation is then con-
sistent with the estimate6 xe/D ≈ 2/S = 2h/(cf D) for the recovery distance
of the momentum deficit. Obviously, a friction length scaling x∗ = cf x/ (2h),
as applied for the analytical description of wake flows in Section 8.3.3, will be
more appropriate to describe the dissipation of the energy-containing large-
scale structures via bottom roughness-induced small-scale turbulence.

Normalization of k by local mean values results in k+ → ∞ for local mean
longitudinal velocity component U → 0, since also V = 0 at the wake cen-
terline. Thus, very high values of k+ in Figure 7.6 indicate a downstream
stagnation point, which is found at the cylinder perimeter (x/D = 0.5), and
for UB and SB wakes at the end of the recirculation zone. For instance, the UB
wake instability shows its maximum value k+ ≈ 20 at x/D = 2. The decrease
of k+ has to be addressed partly to the increase of the center line velocity
especially in the vicinity of the cylinder. Therefore, in order to represent the
TKE decay within the wake rather than the asymptotical far-wake behavior,
k will be non-dimensionalized by the appropriate mean values of the ambient
flow.

In order to examine the role of the large-scale organized flow field for the
transport or momentum and mass, the TKE and the mass variance can be
computed from the triple-decomposed velocity components and mass concen-
trations. For the normalized mass variance

〈
c′ 2
〉+

we obtain
〈
c′ 2
〉

〈c〉2
=

〈
c∗2p
〉

+
〈
c2r
〉

+ 2
〈
c∗p cr

〉

C2
. (7.7)

Similar decompositions apply to other squared quantities like mass fluxes or
TKE.

In Figure 7.7 total values of the TKE and of the mass variance are compared
to the appropriate large-scale periodic values of a vortex street-like wake flow
(series 25_vs07b and 25_vs07c). + and � symbols indicate k+ (here normalized

6 xe is easily obtained from Equation (8.65) for M∗

s = e−1.
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Figure 7.7. Production
and decay of normalized
turbulent kinetic energy
and of mass variance
along the centerline of
vortex street-like shallow
wakes (series 25_vs07b,
25_vs07c, 18_vs06).

by mean ambient values) and the mass variance σ2 +
c given by (7.7). Full lines

denote total values, dashed lines denote large-scale coherent parts only. The
turbulent kinetic energy k+ in the near-field of the wake amounts to more than
40% of the mean advective kinetic energy of the ambient flow. The coherent
part of k+ decreases from 94% to 85% at x/D = 10 in the near wake. The cross-

band term amounts to generally 2
〈
u∗p,i ur,i

〉
/Ui < 0.01. The coherent part of

k+ therefore decays slightly faster than the total TKE. The dissipation of the
total k+ follows a power law dependency, k+ ∝ x−n, where n = 1.55 for this
wake flow. The decrease starts almost immediately at x/D = 1.25. In decaying
grid-generated turbulence usually decay exponents 1 ≤ n ≤ 1.4 have been
observed, recently n = 1.33 has been reported by Zhou et al. (2000). For
grid turbulence in shallow water flow Uijttewaal & Jirka (2003) confirmed
a decay exponent of n ≈ 1.3 to 1.5 in agreement also with experiments on
grid-generated turbulence in soap-film flows.

In contrast, the mass variance
〈
c2
〉+

does not display a predominant power-
law decay, though in decaying grid turbulence such a decay has been observed
(e.g. m = 1.36 for temperature in air (Zhou et al., 2000)). From the total
mass variance we could obtain m = 1.71 for 4 ≤ x/D ≤ 10. Note also that,
compared to k+, the decay of the mass variance starts later, beyond x/D = 3.
Values are generally larger by an order of magnitude, the maximum value is
about 150% of the local mean value. The portion of the coherent variance is
75% of the total variance, the cross-band variance (third term on right-hand-
side of (7.7)) is always less than 1.5%. At x/D = 20 the turbulent kinetic
energy is already completely extracted from the large-scale structures, still the
normalized mass variance amounts to about 0.4. Further mixing of mass in the
wake flow field takes place only with the mechanisms of small-scale turbulent
and molecular diffusion.
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Figure 7.8. Coherent and
random turbulence inten-
sities in VS wake (series
25_vs07c).
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A widely-used measure for the strength of the fluctuating activity of the
flow is the turbulence intensity TI defined as the standard deviation of a flow
component normalized by its mean value, i.e. for instance for the main veloc-
ity component TIu =

〈
u′ 2
〉1/2

/ 〈u〉 = σu/U . Obviously, in shallow wakes the
additional TKE induced locally at an obstacle will re-organize and dissipate
again, as the flow advects downstream. The longitudinal inhomogeneity is dras-
tically illustrated in Figure 7.8 from the distribution of the total turbulence
intensities of the horizontal velocity components indicated by full lines. The
inhomogeneity in x-direction which is very pronounced in the wake near-field
vanishes in the wake far-field. Similarly, the transverse inhomogeneity in the
y-direction initially will be very strong, but will equalize as the ambient flow
is approached outside and downstream of the wake.

The values of TIu and TIv, denoted by � and ∆ symbols, respectively,
indicate a strong anisotropy of the horizontal turbulence field. In the near-wake
the transverse intensity amounts to three times the longitudinal intensity, e.g.
at x/D = 2 TIu = 0.3 and TIv = 0.9. The level of the ambient equilibrium shear
flow of TI = 0.06 is reached at x/D = 15 and x/D = 25 by the longitudinal
and transverse intensities, respectively.

From the decomposed velocity components the small-scale random and
large-scale coherent turbulence intensities have been computed. It is found
that the small-scale random turbulence (dashed lines in Figure 7.8) is hor-
izontally isotropic, i.e. TIur = TIvr . The level of background turbulence is
reached after x/D = 10.7 Hence, the anisotropy is introduced solely by the
strong large-scale coherent turbulence fields. The intense mixing and exchange
processes in the wake of a cylinder, that are induced by the large-scale coherent

7 The downstream asymptotic value of TIu,r = TIv,r ≈ 0.05 is slightly lower than the
total value of the base flow turbulence. This results from the method of decomposition
(polynomial fit in moving window) used to obtain the data of Figure 7.8. A different
parametrization or a more advanced filtering technique will avoid this effect.



192 7. Analysis of LDV-LIF Measurements in Wake Flows

flow field, tend to homogenize the small-scale random turbulence, as to prevent
the anisotropy of plane equilibrium shear flows (cf. also Section 5.3.2). Also
in shallow grid-generated turbulence, examined at similar flow conditions in
the shallow–flow–facility, the horizontal anisotropy has been observed in the
immediate near-field of the grid (x/D < 5), where 2D-LCS did not jet interact
(Uijttewaal & Jirka, 2003).

At the end of the shallow wake flow—at about x/D = 25 for series
25_vs07—the turbulence field can be regarded as homogeneous and isotropic,
which results from the intense shear induced by the large-scale quasi-periodic
motion of the flow leading to re-distribution of the TKE along the wave
number range and dissipation at high wave numbers. The vertical turbu-
lence intensity comprising only the small-scale random part is expected to
be of the order of the horizontal random intensities within the wake flow,
i.e. O

(〈
w2
〉)

= O
(〈
u2
r

〉)
= O

(〈
v2
r

〉)
. Further downstream an undisturbed

plane equilibrium shear flow establishes again, revealing also the characteris-
tic anisotropy of the turbulence intensities. For series 25_vs07 at x/D = 55
the transverse turbulence intensity is TIv = 0.76 TIu, whereas the intensity
ratios of plane equilibrium shear flow are TIv/TIu = 0.71 and TIw/TIu = 0.55
(Nezu & Nakagawa, 1993).

In order to access the mean mass flux in longitudinal flow direction besides
a Reynolds decomposition 〈uc〉 = UC + 〈u′c′〉 also a triple-decomposition can
be applied, i.e.

〈uc〉 = UC +
〈
u∗p c

∗
p

〉
+ 〈ur cr〉 +

〈
u∗p cr

〉
+
〈
ur c

∗
p

〉
. (7.8)

It is found that in shallow cylinder wakes the dominating part of the mean
longitudinal mass flux is associated with the total of the steady-advective and
large-scale coherent parts (first two terms on right-hand-side of (7.8)). The
small-scale random part (third term) is insignificant (of order O

(
10−3

)
with

respect to the total flux). Both cross-correlated ‘inter-regime’ fluctuation terms
are again orders of magnitude smaller than the small-scale turbulent flux (of
orders O

(
10−5

)
and O

(
10−4

)
), and therefore completely irrelevant for the

total mass flux.
The dynamics of the mean mass fluxes are of interest especially in the trans-

verse direction, since because of symmetry 〈vc〉 = 0 along the wake centerline.
The mass flux variance in the longitudinal direction is given by

〈
(uc)′2

〉
=
〈
(uc)2

〉
− 〈uc〉2

= 2UC
〈
u′c′
〉

+ U2
〈
c′2
〉

+ C2
〈
u′2
〉

+2U
〈
u′c′2

〉
+ 2C

〈
u′2c′

〉
+
〈
u′2c′2

〉
−
〈
u′c′
〉2

. (7.9)

In the transverse direction because of V = 0 only one double-correlation term,
one triple-correlation term, and the quadruple-correlation terms will remain.
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Figure 7.9. Variance of the horizontal mass transport at different downstream positions
along the centerline of a shallow VS wake (series 25_vs07c). � and ∆ symbols denote the lon-
gitudinal and transverse mass transport, respectively. Full, dashed, and dotted lines indicate
the variances of total, coherent, and random values. All variances are non-dimensionalized
by the squared longitudinal mean–advective mass flux.

In Figure 7.9 full lines and � and ∆ symbols indicate the mean mass flux vari-
ances in the longitudinal and transverse direction, respectively. All displayed
variances have been non-dimensionalized by the squared mean-advective mass
flux, (UC)2. The dynamics of the longitudinal mass flux is slightly higher than
that of the transverse flux. Note that—corresponding to the velocity and mass
fields—in the wake near-field the mass transport is of significant variability in
both horizontal directions.

Inherent to the mathematical definition of a variance—a Reynolds decom-
position is employed on the velocity and mass components comprising the mass
flux given by (7.9). Of course, the mean mass flux variance can also be expressed
in terms of triple-decomposed fluctuations, i.e. e.g. u′ = u∗p+ur. The variances

resulting from coherent and random parts, i.e.
〈(
u∗pc

∗
p

)2〉
and

〈
(urcr)

2
〉

re-

spectively in the longitudinal direction, are denoted by dashed and dotted
lines in Figure 7.9. In the transverse direction the coherent mass flux variance
is greater than in the longitudinal direction indicating the anisotropy of the
large-scale fluxes, and prominently contributes to the full mass flux variance〈
(vc)′2

〉
. On the contrary the random flux variance is horizontally isotropic,

and can be neglected for the representation of the mass flux variances.
Shallow wake flows—as a prominent class of double shear flows—have to

be characterized not by a single but by two length scales `0 representing the
transverse and the vertical shear, namelyD and h. Although different strategies
can be employed to separate the large-scale coherent quasi-periodic flow field
from the small-scale random turbulent fluctuations, some general remarks will
commonly apply to the analysis of turbulence in shallow wake flows.
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• The large-scale coherent and the small-scale random regimes of fluctuations
can be separated both in the velocity fields and in the scalar fields. The cross-
correlated ‘inter-regime’ part of compound mean quantities, i.e.

〈
c∗p cr

〉
, is

generally negligibly small compared to the ‘inner-regime’ parts.
• For predominating large-scale coherent structures in the flow these are crucial

for the energy and mass balance and re-distribution of the flow. They may
comprise almost the total amount of a quantity distributed over the two
wave-number regimes.

• The small-scale random part of the wake flow fields are of the order of magni-
tude of the ambient equilibrium shear flow. In the wake far-field these values
will be approached asymptotically.

• The anisotropy is due to the large-scale periodic fluctuations only. The in-
tense mixing processes in the wake flow homogenize the small-scale random
turbulence field that reveals perfect isotropy.

7.2 Spectral density estimates in shallow wake flow

Employing the filtering and averaging techniques described in Appendix A,
reliable estimates of the 1D spectral density distributions of the velocity and
mass concentration data have been calculated, as is exemplified in Figure 7.10
for a VS wake (series 25_vs07c) at a downstream centerline position of x/D =
5. The data has been separated into 5 shorter data blocks using an overlap
of 50%. A Kaiser-Bessel window—Equation (A.3) with α = 3.0—has been
applied to minimize noise introduced by discontinuities at the ends of the data
blocks. Thus, a block-averaging over 5 blocks has been conducted in order to
improve the quality of the spectral estimates in the desired frequency range. To
further smooth the PSD estimates, band-averages over 7 neighboring frequency
bands have been calculated at the expense of frequency resolution.

Also spectral density estimates can be presented in non-dimensional form to
allow for better comparison between different realizations. Hence, the spectral
estimates may be normalized by characteristic length and time scales of the
flow under consideration. In the present case of shallow wake flows multiple
scales are of relevance. Different macro length scales describe, for instance, the
production of kinetic energy by large-scale 2D coherent fluctuation (L = D)
and by 3D random turbulence (`0 = h), micro length scales like `η characterize
the transport and dissipation in the inertial and viscous subranges of isotropic
turbulence. While illuminating phenomena in one part of the frequency range,
another part may be obscured. In Figure 7.10 we used a normalization by macro
flow scales, D and Ua. Then, the wave number scales as a Strouhal number,
kwD = 2πD/λ = 2π f D/Ū . This kind of normalization is well suited to
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(b) Normalized 1D cross-PSD Puic(kw) and Puiuj (kw)

Figure 7.10. The 1D power spectral density distributions of a vortex street-like shallow
wake flow (series 25_vs07c) are calculated from a combined LDV-LIF measurement (duration
T = 600 s, re-sampling frequency f = 100 Hz) at the downstream position x/D = 5 on the
wake centerline (y/D = 0). The normalized PSDs were computed by using shorter data
blocks extracted from the data set by a Kaiser-Bessel filter window (A.3) with α = 3.0
and with an overlap of 50%. Thus, a block-averaging over 5 blocks has been conducted
in order to improve the reliability of the spectral estimates. To further improve the PSD
estimates, a band-averaging over 7 bands was applied. Figure (a) illustrates the auto power
spectra of the measured quantities, whereas Figure (b) shows the corresponding cross power
spectral distributions. The upper left plot shows the PSD estimates of the measured velocity
components in the main direction u (full green line) and in the transverse direction v (dashed
blue line), the upper right plot shows the PSD of the mass concentration fluctuations c (full
red line). For the normalization we used characteristic large scales of the mean flow.
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Figure 7.11. The duality
of large-scale coherent fluc-
tuation and small-scale ran-
dom turbulence in shal-
low free–surface shear flows
is clearly reflected in the
spectral density estimates.
It can be captured con-
ceptually in a dual spec-
tral structure of turbulence
(Nadaoka & Yagi, 1998,
Fig. 2).

compare the 2D coherent flow part, but will be of no use in the higher wave
number range.

In Figure 7.10(a) the 1D auto-power spectral density estimates of the hor-
izontal velocity components u and v are indicated in the left-hand plot by a
green full line and a blue dashed line, respectively. The right-hand plot depicts
the auto-PSD of the mass concentration, Pcc. Furthermore, also 1D cross-
power spectral density estimates can be computed, as shown in Figure 7.10(b).
The left-sided plot displays the cross-spectra between velocity components and
mass, Puc and Pvc, the right-side plot shows the velocity cross-spectrum, Puv.8

7.2.1 Spectral structure of turbulence in shallow wake flow

The duality of large-scale 2D coherent fluctuations and 3D random turbu-
lent motion in the turbulence fields of shallow shear flows is reflected also
in the spectral domain. The concept of a dual spectral structure of turbu-
lence (cf. Figure 7.11) has been incorporated in two-length-scale turbulence
models for 2D LES in order to numerically simulate the dynamics of large-
scale vortical structures in shallow shear flows (e.g. Nadaoka & Yagi, 1998;
Babarutsi & Chu, 1998). In the present case of turbulent shallow wake flows
induced by a single obstacle, a distinct spectral distribution of turbulent fluc-
tuations of velocity and mass may be observed, as discussed below and sum-
marized in Table 7.3.

Spectral range of large-scale coherent fluctuation. In the range of low
frequencies for f < U/h the turbulence field is dominated by large horizontal
eddies (` > h) shedding off quasi-periodically from the obstacle, and constitut-
ing the low-frequent coherent part of the flow. This coherent motion and its
associated transport of energy and mass can be described using concepts of 2D

8 The physical meaning of the cross-spectral density estimates is unclear in the context of
turbulence and transfer of TKE and mass. Thus, we will refrain from showing cross-spectra
in the present study.
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isotropic turbulence. Though in general, turbulence is far from being isotropic,
‘locally’ in the low wave number range, where vertical fluctuations are absent,
the motion can be regarded as horizontally isotropic.

In the most unstable case of a vortex street-like wake instability (VS) kinetic
energy is extracted from the mean flow, and introduced to the fluctuating flow
field at a frequency or at a wave number predefined by the cylinder Strouhal
number, i.e. fi = StUa/D, and with Taylor’s hypothesis, kw,i = 2π St/D,
respectively. Though in an Eulerian frame the energy forcing is continuous
(located at the obstacle), the coherent motion of the large horizontal eddies
should rather be regarded as decaying turbulence in a Lagrangian frame as
the LCS advect downstream with the mean flow. Of course, the LCS will not
decay ‘freely’ due to viscous dissipation, but dissipation is induced by bottom
friction. As the LCS advect downstream in the wake of the cylinder they may
be considered to experience also an additional—continuous, but decreasing—
forcing due to the weak mean transverse shear of the wake flow.

Turning from the topographic forcing at the obstacle for VS wakes to the
internal transverse shear forcing of the steady bubble (SB) wakes—and to a
minor degree also of unsteady bubble (UB) wakes—, the characteristics of the
large-scale eddies growing in the wake shear layers and thus the large-scale
2D turbulence are quite different. In the lateral bubble boundary layers the
forcing is more continuous, and not restricted to a fixed wave number. Still,
the LCS are subjected to continuous dissipation due to bottom friction, but
do not decay freely.

In quasi-2D turbulence, where energy, but also enstrophy are conserved
quantities, a double spectral cascade of turbulence may be encountered (cf.
Section 6.2.4). For wave numbers kw > kw,i energy is transferred toward higher
kw following a k−3

w enstrophy cascade, Equation (6.38). This represents the in-
fluence of the smaller vortical filaments connecting the LCS of alternate sign
of vorticity across the vortex street (cf. also Part III). An energy transfer to-
ward higher wave numbers following a k−3

w spectral distribution has already
been reported for shallow plane jets (Dracos et al., 1992) and for shal-
low mixing layers (Uijttewaal & Tukker, 1998; Uijttewaal & Booij,
2000)—representing continuously forced 2D turbulence due to a pro-
nounced mean transverse shear—as well as for shallow grid–turbulence
(Uijttewaal & Jirka, 2003)—representing decaying 2D turbulence.

According to Fjortoft’s theorem, the conservation of energy and enstrophy
requires a double cascade of 2D turbulence, through which energy will spread
from the forcing wave number kw,i both to lower and higher wave numbers.
Consequently, this requires for wave numbers kw < kw,i that energy will be
transferred toward even lower wave numbers along an inverse energy cascade
(cf. p. 163). This effect would necessitate a mechanism like the merging of
eddies of the same sense of rotation to even larger vortices. Since on the one
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hand in a vortex street co-rotating eddies are permanently separated by shear-
dominated regions due to the staggered arrangement (cf. also Part III), and
since on the other hand the shear layers of UB and SB wakes are too short to
allow significant merging processes, an inverse energy cascade will be missing
in shallow wake flows.

In contrast to isotropic purely 2D turbulence, either continuously forced
or freely decaying, in bounded 2D turbulence the bottom friction acting as a
direct sink of energy may allow for such a ‘truncated’ double cascade consisting
only of an enstrophy cascade into the higher wave number range. By means of
the negative work done by the large-scale coherent motion against the bottom
friction forces a significant part of the energy associated with the large-scale
turbulence is transferred directly to the small-scale bed-generated turbulence
without cascading through the ‘spectral pipeline’ of the intermediate length
scales (Babarutsi & Chu, 1991). As indicated in Figure 7.11, the energy
extracted from the 2D coherent fluctuations is also regarded as a source of
small-scale 3D turbulence (Nadaoka & Yagi, 1998), though the major part
of the small-scale TKE is produced directly due to the vertical bottom–induced
shear of the mean flow (Babarutsi & Chu, 1998). As will be obvious from the
PSD estimates of the decomposed fluctuations (cf. Figure 7.13), the amount
of TKE contained in the large-scale coherent motion can easily reach the same
order of magnitude compared to the amount contained in the 3D random
turbulence. Of course, as the LCS fade away when advected downstream, also
the TKE stored in the low-frequent spectral range decreases.

For the diffusion of a passive scalar in 2D turbulence the variance of a
scalar quantity has been analyzed in the spectral domain (cf. pp. 163). For
high Schmidt number flows (Sc � 1) the mass variance—contained in forced
fluctuations with wave numbers kwi,γ > kwi in the range of the enstrophy cas-
cade of TKE—will pass through the inertial-convective and viscous-convective
subranges. The spectral density distribution of mass concentration, Scc (kw),
can be described by Equation (6.40), and follows a k−1

w cascade up to the
smallest dissipative length scales.

Spectral range of small-scale random turbulent fluctuation. In shallow
turbulent free–surface flows for sufficiently high bulk Reynolds numbers Reh
there exist a range of small length scales ` � h, for which fluctuations of
velocity and scalar may be approximated by Kolmogorov’s concept of locally
isotropic 3D turbulence in the universal equilibrium range, as introduced in
Section 6.2.2. This requires that—though the instantaneous strain field sij is
anisotropic also at the small scales—, the time-averaged strain field 〈sij〉 shows
isotropy. In the vicinity of flow boundaries at the bottom and the water surface
obviously permanent anisotropy prevails (Uijttewaal & Jirka, 2003), but
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anisotropy may also be introduced by secondary currents of permanent (or
periodic) character.

The spectral density distribution of the kinetic energy in the inertial sub-
range of locally isotropic 3D turbulence is characterized by an energy cascade
S (kw) ∝ k

−5/3
w . Equation (6.26) represents the famous Kolmogorov -5/3 power

law.

In highly turbulent flows with an universal equilibrium range of local
isotropic turbulence also for the scalar fluctuations a wave number range of
local isotropy will exist (cf. Section 6.2.3). For high Schmidt number flows the
3D random scalar variance will be re-distributed toward smaller length scales
at first in the inertial–convective subrange, where both dissipation of TKE and
diffusion of scalar variance are still negligible. Then, also the spectral den-
sity distribution of the scalar variance follows a k−5/3

w decay, Equation (6.31)

describes the proportionality Scc (kw) ∝ k
−5/3
w . In the dissipative–convective

subrange at very small scales `η > ` > `ηγ , where dissipation by viscosity dom-
inates the TKE spectrum but scalar variance is still unaffected by molecular
diffusion, the spectral transfer of scalar variance becomes less rapid. It then
follows a Scc (kw) ∝ k−1

w re-distribution given by Equation (6.34). As men-

Table 7.3. 1D spectral density estimates of horizontal velocity and mass concentration in
shallow turbulent wake flows

1D spectral density estimates

of horizontal velocity components,
Suu, Svv

of mass concentration, Scc

D > ` > h quasi 2D turbulence forced at kw,i

inverse energy cascade (kw < kw,i)

S ∝ k
−5/3
w (truncated)

direct scalar cascade
Sγ ∝ k

−5/3
w (truncated)

enstrophy cascade (kw > kw,i)
S ∝ k−3

w

inertial–convective subrange
(` > `η > `η,γ)

Sγ ∝ k−1
w

dissipative–convective subrange
(`η > ` > `η,γ)

Sγ ∝ k−1
w (not applicable)

` � h 3D isotropic turbulence

inertial subrange

S ∝ k
−5/3
w

inertial–convective subrange
(h � ` � `η)

Sγ ∝ k
−5/3
w

dissipative subrange
eq. (6.25) (not resolved)

dissipative–convective subrange
(`η > ` > `η,γ)

Sγ ∝ k−1
w (not resolved)
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tioned previously, the spatiotemporal resolution of the LDV-LIF measurement
system and setup does not allow to access length scales ` ≤ O (`η).

7.2.2 Spectral density estimates for different shallow wake classes

Shallow turbulent wake flows of the different classes of stability will show a
common duality of the structure of turbulence, characterized on the large scales
by the quasi-2D behavior of the coherent flow motion generated by the mean
horizontal shear and on the small scales by the 3D isotropic behavior of the
random turbulence field generated by the bottom–induced vertical shear. As
will be elucidated from the plots of Figure 7.12, this duality is reflected in the
spectral density distributions of energy and mass observed for the different
wake stability classes. As on the small scales all wake flows are subjected
to the same mechanisms of 3D turbulence, their PSD estimates will follow
the same laws, regardless of the actual wake stability class. However, as the
predominating forcing mechanisms for the VS and SB wakes differ, which are
responsible for the stability of the large-scale coherent flow field, these are
expected also to influence the structure of turbulence on the large scales in
different ways.

Spectral density estimates of 3D turbulent fluctuations. For length
scales ` . h the mean vertical strain of the shallow channel flow, bounded by
the bottom and the free surface, will act as a source of TKE. The turbulent
energy produced in the lower 3D scale range, then, is spectrally transferred
through the inertial subrange of locally isotropic turbulence to be affected
by viscosity and dissipated at even smaller scales of the viscous subrange.
Consequently, we can identify a transitional wave number or frequency between
the 2D and 3D turbulence ranges, i.e. at the low–frequency end of the 3D
turbulence range, that will be of the order of kw,h = 2π/h, or fh = Ū/h,
respectively. In the wave number or frequency range kw > O (kw,h) or f >
O (fh) the cascades of energy and scalar variance will follow the power laws
of locally isotropic turbulence, provided that a sufficiently high bulk Reynolds
number Reh allows for the establishment of a significant inertial subrange.
In the framework of this study all laboratory shallow turbulent wake flows
displayed transitional frequencies of the order of fh = O (1) ≤ Ua/h ≈ 7 Hz.

Figure 7.12 presents 1D power spectral density estimates of the transverse
velocity component (left-hand plots) and of the mass concentration (right-
hand plots) for wake flows of different stability classes at selected downstream
positions along the centerlines of the wakes. Dashed lines indicate power laws
of the cascades of 2D and 3D turbulence, as discussed in Section 7.2.1 (cf. also
Table 7.3). Figures 7.12(a), (b), and (c) display PSD estimates for a vortex
street-like wake (series 18_vs06) at x/D = 3, 10, 20, and 55, for an unsteady
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Figure 7.12. 1D power spectral density estimates of the transverse velocity component (left-
hand plots) and of the mass concentration (right-hand plots) are presented for wake flows
of different stability classes. The data has been obtained at selected downstream positions
along the centerlines of the wakes. Dashed lines indicate power laws of the cascades of 2D
and 3D turbulence (cf. Table 7.3). — (a) Vortex street-like wake (series 18_vs06) at
x/D = 3, 10, 20, and 55. (b) Unsteady bubble wake (series 17_ub25) at x/D = 2, 4, and
8. (c) Steady bubble wake (series 18_sb51) at x/D = 2.5, and 5.5.
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bubble wake (series 17_ub25) at x/D = 2, 4, and 8, and for a steady bubble
wake (series 18_sb51) at x/D = 2.5, and 5.5, respectively.

Regardless of the stability class all shallow turbulent wake flows display an
energy cascade in the 1D PSD estimates of the transverse velocity component
that follows the Kolmogorov -5/3 power law, Equation (6.26), and indicates
the existence of an inertial subrange. This also applies to the 1D PSD estimates
of the longitudinal velocity component, as can be seen, for instance, from the
example VS wake data presented in Figure 7.10. Consequently, all examined
wake flows encounter an inertial–convective subrange of scalar transport and
mixing, in which the mass variance also cascades toward higher wave numbers
following a -5/3 power law, Equation (6.31). Due to the restrictions in the spa-
tiotemporal resolution of the LDV-LIF measurements the dissipative subrange,
delineated by the Kolmogorov scales of length and time, `η and τη, cannot be
inferred from the calculated PSD estimates Pvv. Moreover, albeit due to the
high Schmidt number an viscous–convective subrange will exist, also its more
gradual -1 power law decay is not resolved in the spectral estimates of the mass
variance.

Spectral density estimates of low-frequent fluctuations. The low-
frequent coherent motion of the wake flow is generated by the mean horizontal
strain field induced by a single blunt obstacle, that immediately becomes un-
stable on the large scales. Regarding the forcing of the large-scale or global in-
stability of a shallow shear flow, different mechanisms have been distinguished
by Jirka (1998, 1999, 2001) (cf. Section 2.2.3). As introduced in Section 2.3,
in shallow wake flows, on the one hand, we observe a topographic forcing with
only small regions of absolute instability located immediately at the cylinder
perimeter, which result in alternate shedding of large vortices directly from the
obstacle that form a vortex street when advected downstream—constituting
a large region of convective instability—. On the other hand, for more stable
shallow wakes the region of absolute instability develops into a recirculation
zone which is attached to the cylinder. Due to internal transverse shear forc-
ing vortical structures then grow in the lateral shear layers of the recirculation
bubble, and in the case of an UB wake they roll-up engulfing part of the bub-
ble and separate from the downstream bubble end to form the convectively
unstable vortex street-like wake. If in the case of a SB wake the internal shear
forcing is weak compared to the damping by bottom friction, the LCS in the
bubble shear layers will not contain enough energy to roll-up and merge at the
end of the bubble, so that the wake remains stable at the large scales. The
roll-up mechanisms of UB wakes as well as the stabilization due to bottom
friction has been visualized by Negretti (2003b). More detail on the global
instability of shallow wake flows will be given in Section 9.2.
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As has been reported by v. Carmer & Jirka (2001), the spectral struc-
ture of shallow turbulent wakes on the large scales reflects some aspects of
2D turbulence. However, other structural aspects of 2D turbulence are miss-
ing in the spectral imprint of shallow wakes, as argued in Section 7.2.1. Since
shallow wake flows differ significantly regarding their large-scale coherent flow
fields—because of different kinds and strengths of the forcing mechanism and
different strengths of the dampening, resulting even in a different global sta-
bility regime—, we will surely expect also the spectral structure of turbulence
to be affected in the low frequency range, and to reflect such differences.

The forcing of the large-scale coherent motion of the wake flow is introduced
at a frequency fi given by the Strouhal number of the global wake instability,
i.e. fi = StUa/D the shedding frequency of the LCS. Due to the organization
of the LCS in a vortex street-like arrangement further growth of the eddies
due to merging is effectively prevented, as has been discussed in the previous
section and will be illustrated in Part III also from the field-wise observations.
Hence, no inverse energy cascade occurs in shallow VS and UB wakes. As in SB
wakes the transverse shear forcing is weak compared to the stabilizing influence
of the bottom friction–induced viscous dissipation, also in the PSD estimates
of SB wakes no inverse cascading of energy toward lower wave numbers can
take place.

On the other hand, for a frequency range larger than the excitation fre-
quency, but still smaller than the transition frequency toward 3D turbulence,
i.e. fi < f < fh, TKE can be spectrally transferred following a -3 enstro-
phy cascade given by Equation (6.38). This represents the effect of smaller
vortical filaments connecting the primary LCS. Vortex street-like wakes are
characterized by a very narrow spectral peak with steep edges indicating very
pronounced LCS with rather weak connecting vortical filaments, which can
be understood rather as isolated LCS living in an enhanced background tur-
bulence field. As the coherent flow field is advected downstream, its energy
is dissipated due to bottom friction, with the weak filaments disintegrating
quickly. Hence, an enstrophy cascade is hardly encountered in VS wakes. On
the contrary, in unsteady and steady bubble wakes LCS are evolving continu-
ously in the detached bubble shear layers, which results in a broader variety
of sizes of large-scale eddies. This also allows for a more significant enstrophy
cascade in UB and SB wakes (cf. Figures 7.12(b) and (c)).

The transition between the the spectral ranges of 2D and 3D turbu-
lence takes place following a very gentle decline, which approaches the con-
stant 1D spectral energy distribution of 3D turbulence at low wave numbers,
Svv (kw) ∝ k 0

w. This may be regarded as a strong indication that the coherent
TKE contained in the low wave number range of the PSD estimates is dissi-
pated directly due to bottom friction instead of cascading down the ‘spectral
pipeline’ into the viscous subrange.
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The spectral density estimates of the mass variance of the coherent flow
field clearly show the two-dimensional structure at the large scales. In shallow
wakes of all stability classes the spectral mass transfer follows a -1 power
law decay given by Equation (6.40). A significant amount of mass variance
is concentrated at the frequency of the primary LCS as long as they exist.
Remarkably and in contrast to the velocity spectral density estimates, the mass
fluctuations are cascading steadily toward higher wave numbers through the
2D and 3D spectral ranges until they finally will be diffused molecularly. In the
PSD estimates we observe a continuous transition from the -1 power law of 2D
turbulence to the -5/3 power law in the inertial–convective subrange. Finally
there is some evidence that the mass variance concentrated at fi may also
inversely cascade toward lower wave numbers, or that low-frequent fluctuations
are less susceptible to molecular diffusion. This may hint at a fundamental
difference between the TKE of the coherent flow field, which is to a certain
part directly dissipated by bottom friction, and the mass, which is not sensitive
to the existence of a rigid bottom. Obviously, there is no mass concentration
equivalent to the steep vertical velocity gradient near the bottom.

Spectral peak of forcing. The periodicity TP of the large-scale coherent
motion of the vortex street-like wake flow will not change with increasing
downstream position, as has already been demonstrated from the evaluation
of the auto-correlation coefficients Rvv (τ). In the spectral density distribu-
tions the periodicity corresponds to the forcing frequency fP = T −1

P of the
pronounced PSD peak representing the turbulence forcing. Along the wake
centerline we may obtain the time of a full shedding cycle either from the
transverse velocity component or from the longitudinal velocity component as
TP = TP,v = 2TP,u (cf. Section 7.1.3). Thus, the peak of forced turbulence is
located at fP = fP,v = 1/2 fP,u, as can be seen, for instance, in Figure 7.10.
Since tracer mass is continuously introduced into both the right and left cylin-
der boundary layers, the cycle period of the concentration measurements is
TP,c = 1/2Tp, thus fP,c = 2 fP = 2 fP,v. From the PSD estimates both of
the transverse velocity and of the concentration, presented in Figures 7.12(a)
to (c), no shift in the peak frequency fP can be recognized. Also from PSD
estimates, calculated with higher spectral resolution for this purpose, fP re-
mained constant for all downstream positions. This indicates the absence of
vortex pairing or merging events on the large coherent flow scale.

The peak amplitude of the PSD estimate represents the strength of the tur-
bulence forcing. Of course, VS class wakes show a higher amplitude of up to
3 orders of magnitude above the 3D turbulence level compared to SB class
wakes. This reflects the more rigorous topographic forcing of VS wakes com-
pared to the rather internal shear forcing of SB wakes. As the LCS containing
the low-frequent TKE advect downstream, their energy is dissipated due to
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bottom friction. Hence, the peak amplitude and the magnitude decrease with
downstream position as does the TKE in the full spectral range (cf. Figures 7.6
and 7.7).

7.2.3 Spectral density estimates for small- and large-scale

turbulence

The 1D spectral density distribution among the scales of turbulence led to a
kind of dual spectral structure of turbulence in shallow wake flows. In order
to demarcate the part of TKE contained in the large-scale coherent motion
from the part contained in the small-scale random turbulent fluctuation, the
techniques of spectral analysis may also be applied to data sets that have
previously been triple-decomposed.

In Section 7.1.1 we introduced different methods to discriminate the low-
and high-frequency parts of sampled velocity and concentration data using the
cycle period of the vortex shedding process as a characteristic time scale for
the coherent flow. A phase–resolved averaging procedure (cf. also Sections 3.3
and 10.1.2) can be employed to re-sample the phase–aligned data. Note that
phase–resolved averages can be based either on the average cycle period TP or
on the individual cycle periods TP,i. The latter has been preferably employed
for shallow wake flows, since this technique is unaffected by slight variations
of TP,i. It turned out that using the average TP tended to blur the phase–
resolved averages especially over long time histories comprising many cycles.
The phase–resolved averaging procedure effectively operates as a narrow band-
pass filter centered about fi. As a second technique to access the large-scale
motion a moving average has been calculated using a low–order polynomial
that was fitted in a time window of roughly 2πD/Ua, i.e. roughly TP /4 if
a global wake instability would exist. Since this method works as a low-pass
filter, it is well suited to extract the low-frequent part of an aperiodic flow field
as encountered in shallow wake flows of SB stability class.

Both averaging techniques have been applied to the same velocity and mass
concentration data in order to separate the large and small scale fluctuations
of a vortex street-like shallow wake flow (series 25_vs07b) at a downstream
centerline position of x/D = 2. The resulting 1D PSD estimates are presented
in Figure 7.13. Here, full lines indicate the PSD estimates obtained from the
small-scale random fluctuations only, whereas dash-dotted lines indicate the su-
perposition of both—random and coherent—parts. Using the phase–resolved
averaged data the spectral peak containing solely the coherent motion can
be extracted from the turbulence spectral distribution, as exemplified in Fig-
ure 7.13(a). The spectral density distribution associated with the random tur-
bulence remains unaffected over the whole spectral range—even at the large
scales, where also 2D coherent motions occur. Contrarily, from the moving
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(a) Decomposition using a phase–resolved averaging procedure
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(b) Decomposition using a low–order polynomial fitted to the
data in a moving time window

Figure 7.13. 1D PSD estimates in shallow turbulent wakes have been calculated also from
triple-decomposed data separately for 2D coherent and 3D random flow fields. Different
averaging techniques have been applied to the same velocity and mass concentration data of
a vortex street-like shallow wake flow (series 25_vs07b) at a downstream centerline position
of x/D = 2. Full lines indicate the PSD estimates obtained from the small-scale random
fluctuations only, whereas dash-dotted lines indicate the superposition of both—random and
coherent—parts.
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Figure 7.14. Semi-
logarithmic plot of the
PSD estimates presented
in Figure 7.13(a) using a
linear scale for the ordinate
and a log scale for the
abscissa
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polynomial fit all the low-frequent fluctuations are extracted whether they
belong to the coherent or to the random motion of the flow. This low-pass fil-
tering is clearly reflected in the 1D PSD estimates, as shown in Figure 7.13(b).
Also from the spectral density estimates of the turbulence we draw the conclu-
sion that the phase–resolved averaging technique is well suited to extract the
coherent part of the flow field.

In Figure 7.14 the data of Figure 7.13(a) has been re-drawn using a linear
scaling for the ordinate axis. The magnitude of the narrow peak centered at fi
elucidates the strength of the large-scale coherent vortices forming the vortex
street-like wake. On the contrary, the low PSD values of the 3D random tur-
bulence are distributed over a wide range of frequencies. Therefore, the total
kinetic energy accumulated in the coherent flow is roughly of the same order of
magnitude as the TKE contained in the small-scale random turbulence. Note
that the plots of Figure 7.14 display the frequency range on a logarithmic ab-
scissa, which visually increases the width of the narrow peak of 2D turbulence
and at the same time shrinks the wide frequency range of 3D turbulence.
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8. Integral Model for Shallow Wake Flow

In the following we will derive an analytical model to describe the time- and
depth-averaged velocity and scalar distributions, 〈ū〉 (x, y) and 〈c̄〉 (x, y), in the
far field of a shallow turbulent wake flow. We will decompose the main velocity
component into an ambient velocity ua well outside the wake and a deficit (or
defect) velocity us, i.e. u (x, y) = ua (x)−us (x, y), as illustrated in the definition
sketch of Figure 8.1. Therefore, in the first instance, using subsequent deficit
formulations for the momentum and volume fluxes, we derive an analytical
deficit model. This can be superposed onto the underlying vertically sheared
base flow field in order to obtain a non-deficit model to describe the complete
flow field of a shallow far wake.

8.1 Basic considerations

8.1.1 Transverse distribution of velocity and mass

Similar to other 2D shear flows, the cross-sectional distributions of 〈us〉 (x, y)
and 〈c〉 (x, y) are almost self-similar in the wake flow far downstream of an
obstacle. They can then be described employing Gaussian distributions (cf. for
instance Hinze (1975); Holley & Jirka (1986); Pope (2000)), although also
other functional dependencies, e.g. trigonometrical like sech ξ or even polyno-
mials, are in use (cf. the review of Negretti (2003a)). In the near field of

Figure 8.1. Conceptual
sketch of the time-mean
flow field of the shallow
wake downstream of a
cylinder.

x

y
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Ua

U(y)

Usc
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the wake self-similar profiles have not jet developed. Further detail on the
self-similarity and Gaussian transverse distribution of 〈us〉 and 〈c〉 in shallow
turbulent wake flow will be presented in Section 9.1.

Using an appropriate standardization for the transverse direction, y+ = y/δ,
and for the cross-sectionally distributed quantity, m+ = m/mc, the function-
ality of the self-similar distribution is found to be Gaussian.

Thus, in the far wake we obtain for the defect velocity,

〈us (x, y)〉+ = fu
(
y+
)

= exp
(
−
(
n y+

)2)
, i.e. (8.1a)

〈us (x, y)〉 = 〈usc (x)〉 exp

(
−
(
n

y

δ (x)

)2
)

, (8.1b)

and for a mass concentration

〈c (x, y)〉+ = fc
(
y+
)

= exp

(
−
(
n
y+

rγ

)2
)

, i.e. (8.2a)

〈c (x, y)〉 = 〈cc (x)〉 exp

(
−
(
n

y

rγ δ (x)

)2
)

. (8.2b)

Here, δ denotes the wake half width based on the velocity, and rγ denotes the
diffusion ratio of the concentration-based half width to the velocity-base half
width rγ = δc/δu expressing the diffusion of a scalar quantity compared to
the dissipation of the velocity deficit.1 The conversion factor n depends on the
definition of the wake half width δ.

In general, the wake half width δ is defined as the cross-sectional distance
from the centerline, for which the main velocity component reaches a certain
fraction of the centerline velocity usc. There are three commonly used defini-
tions of δ and their associated constants n listed in Table 8.1.

When setting up an integral model we will perform cross-sectional integra-
tions of various combinations of us and c. The general solution for the integral
of a normally distributed variable x is given by

1 The turbulent Schmidt number Sct = νt/Dt is related to the diffusion ratio as Sct =
1/r2

γ = δ2
u/δ2

c (cf. Pope, 2000, pp. 162).

Table 8.1. Conversion of commonly used definitions of wake half width.

transverse position value of velocity defect conversion factor n

δ = δ1/2 us
�
δ1/2

�
= 1

2
usc n2 = ln 2

δ = δ1/e us
�
δ1/e

�
= 1

e
usc n2 = 1

δ = δ1/e2 us
�
δ1/e2

�
= 1

e2
usc n2 = 2
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xe∫

0

exp
(
−q2x2

)
dx =

√
π

2q
erf (q xe) , (8.3)

where erf (x) = 2√
π

x∫
0

exp
(
−t2
)
dt is the error function.

Since erf (∞) = 1, the definite integral of a Gaussian distribution becomes

lim
xe→∞

xe∫

0

exp
(
−q2x2

)
dx =

√
π

2q
. (8.4)

Some definite integrals, which we will use for the fluxes of momentum and
mass, and their associated integral constants are evaluated below.

∫∞
−∞ us dy = i1 usc with i1 =

√
π δ
n ,∫∞

−∞ u2
s dy = i2 u

2
sc with i2 =

√
π
2
δ
n ,∫∞

−∞ c dy = i3 cc with i3 =
√
π
rγ δ
n ,∫∞

−∞ c us dy = i4 cc usc with i4 =
√

π
r2γ+1

rγ δ
n ,

where the subscript c denotes values at the wake centerline.

8.1.2 Integral volume and momentum equations

For the development of an integral shallow wake model it is convenient to
use appropriate integrated variables rather then velocity fields and mass con-
centration fields, though in Section 8.2 we will deduce the basic differential
equations from the 2D shallow flow equations. Although we will primarily use
their deficit formulations, also the total fluxes are presented below. The total
volume flux (or discharge), specific momentum flux (i.e. momentum flux per
unit mass ρ), and tracer mass flux, respectively, are

Q = lim
ye→∞

∫ ye

−ye
〈u〉h dy

= lim
ye→∞

∫ ye

−ye
〈ua − us〉h dy = Qa −Qs , (8.5)

M = lim
ye→∞

∫ ye

−ye
(〈u〉h) 〈u〉 dy = lim

ye→∞

∫ ye

−ye
〈ua − us〉2 h dy

= lim
ye→∞

∫ ye

−ye
〈uau〉h dy − lim

ye→∞

∫ ye

−ye
〈usu〉h dy , (8.6)

Qc = lim
ye→∞

∫ ye

−ye
〈cu〉h dy

= lim
ye→∞

∫ ye

−ye
〈c (ua − us)〉h dy = Qca −Qcs . (8.7)
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Obviously, all integral terms, which only contain powers of 〈ua〉, but not of 〈us〉
such as Qa, can not be integrated definitely with the limits ye → ∞. However,
in Section 8.3.5 we will also present an approximation for those fluxes, leading
to an analytical solution for the underlying set of differential equations.

The deficit fluxes of volume, specific momentum, and mass, respectively,
are defined as

Qs = lim
ye→∞

∫ ye

−ye
〈us〉h dy , (8.8)

Ms = lim
ye→∞

∫ ye

−ye
〈us u〉h dy = lim

ye→∞

∫ ye

−ye
〈us (ua − us)〉h dy , (8.9)

Qcs = lim
ye→∞

∫ ye

−ye
〈c us〉h dy . (8.10)

We can solve the definite integrals for Qs, Ms and Qc also for ye → ∞ using
the Gaussian integral solutions from Section 8.1.1. For the volume deficit flux,
the momentum deficit flux and the total mass flux, respectively, this yields

Qs = i1 h 〈usc〉 =
√
π
δ

n
h 〈usc〉 , (8.11)

Ms = i1 h 〈ua usc〉 − i2 h
〈
u2
sc

〉

=
√
π
δ

n
h 〈ua usc〉 −

√
π

2

δ

n
h
〈
u2
sc

〉
, (8.12)

Qc = i3 h 〈cc ua〉 − i4 h 〈cc usc〉

=
√
π
rγ δ

n
h 〈cc ua〉 −

√
π

r2γ + 1

rγ δ

n
h 〈cc usc〉 . (8.13)

8.1.3 Initial conditions for flux quantities

In general, for the inflow conditions we will define an arbitrary cross section
where we assume Gaussian distributions of 〈us〉 and c to be valid. These dis-
tributions are characterized by initial values (denoted with subscript 0) for
the wake half width δ0 and for the centerline values of the velocity defect
〈usc0〉 and of the tracer mass concentration 〈cc0〉. With Equations (8.11) to
(8.13) this yields initial flux values for volume deficit, momentum deficit and
for mass, respectively,

Qs0 =
√
π
δ0
n
h 〈usc0〉 , (8.14)
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Ms0 =
√
π
δ0
n
h 〈usc0〉

(
〈ua〉 −

〈usc0〉√
2

)
, (8.15)

Qc0 =
√
π
rγ δ

n
h 〈cc0〉


〈ua〉 −

〈usc0〉√
r2γ + 1


 . (8.16)

We could further simplify the integral wake model, if we would choose the
initial cross section to be located at the downstream stagnation point at the
end of the recirculation zone of the wake, thus 〈usc0〉 = 〈ua〉. Then the initial
fluxes become

Q′
s0 =

√
π
δ0
n
h 〈ua〉 , (8.17)

M ′
s0 =

√
π
δ0
n
h
〈
u2
a

〉(
1 − 1√

2

)
, (8.18)

Q′
c0 =

√
π
rγ δ

n
h 〈ccua〉


1 − 1√

r2γ + 1


 . (8.19)

8.2 Conservation equations in far field of shallow wake

In this section we will derive the set of equations for the analytical far wake
model on the basis of the 2D shallow water equations (2D SWE). Here, we will
present a brief summary on the deduction of the 2D SWE. For more detail the
reader is referred to a review by v. Carmer et al. (2000) or to textbooks on
hydrodynamics like Hinze (1975); Tennekes & Lumley (1977); Chaudhry
(1993). A thorough discussion has been given by Vreugdenhil (1994). Start-
ing from the Navier-Stokes Equations and using order–of–magnitude argu-
ments due to the shallowness of the flow, in the vertical momentum equation
the local acceleration term, advective terms and stress gradient terms are small
compared to the gravitational acceleration term, and can be neglected. Thus,
the z-momentum equation consists only of the hydrostatic pressure to balance
the gravitational acceleration: ∂p

∂z = −ρg. Implementation of this hydrostatic
pressure distribution into the horizontal momentum equations results in 3D
shallow water equations. A Reynolds averaging procedure2 applied to these
equations provides time-mean equations of continuity and momentum. Fur-
thermore, an integrating over the flow depth h results in the time- and depth-
averaged horizontal velocity components, 〈u〉 and 〈v〉, and in the time- and
depth-averaged mass concentration, 〈c〉, given by
2 Reynolds averaging means, that we decompose the velocity components into temporal

mean and fluctuating parts u = 〈u〉 + u′, substitute them into the equation and finally
take the temporal average 〈 〉 of the equation.
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〈ui〉 =
1

h

∫ h

0
〈ui (z)〉 dz , and 〈c〉 =

1

h

∫ h

0
〈c (z)〉 dz . (8.20)

Vertical local deviations of the time- and depth-averaged values are denoted
as

〈ui〉′ =
(
〈ui〉 − 〈ui〉

)
and 〈c〉′ = (〈c〉 − c̄) .

Since in the remainder of this chapter we are concerned with depth-averaged
quantities solely, we omit the over-bar notation for clarity unless necessary
otherwise.

The—time- and depth-averaged—continuity, momentum, and tracer mass
conservation equations constitute a set of 2D shallow water equations given as

∂h

∂t
+
∂ 〈u〉h
∂x

+
∂ 〈v〉h
∂y

= 0 , (8.21)

∂ 〈u〉h
∂t

+
∂

∂x

(
〈u〉2 h+

1

2
gh2

)
+
∂ 〈u〉 〈v〉h

∂y

= gh (S0x − Sfx) +
∂

∂x
(hTxx) +

∂

∂y
(hTxy) , (8.22)

∂ 〈v〉h
∂t

+
∂

∂y

(
〈v〉2 h+

1

2
gh2

)
+
∂ 〈u〉 〈v〉h

∂x

= gh (S0y − Sfy) +
∂

∂x
(hTyx) +

∂

∂y
(hTyy) , (8.23)

∂ 〈c〉h
∂t

+
∂ 〈c〉 〈u〉h

∂x
+
∂ 〈c〉 〈v〉h

∂y

+
∂

∂x

(
−Dm

∂ 〈c〉h
∂x

+
〈
u′c′
〉
h+ Ṁx

)

+
∂

∂y

(
−Dm

∂ 〈c〉h
∂y

+
〈
v′c′
〉
h+ Ṁy

)
= 0 , (8.24)

where S0 and Sf represent the bottom slope and the energy slope, respectively.
Tij denote time- and depth-averaged lateral stress terms, and Ṁi denote mass
dispersion tensors. Dm is the molecular diffusivity of a tracer mass in the fluid,
and g is the gravitational acceleration.

Since the bottom slope has been assumed to be mild, it is approximated by
S0 = sinϑ with an inclination angle ϑ.

The mean energy dissipation due to time-averaged bottom shear stresses
〈τbxi〉 will be related to the depth-averaged time-mean flow field by a quadratic
friction law,
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ghSfx =
〈τbx〉
ρ

=
λ

8
〈u〉
√

〈u〉2 + 〈v〉2 , and (8.25a)

ghSfy =
〈τby〉
ρ

=
λ

8
〈v〉
√

〈u〉2 + 〈v〉2 , (8.25b)

where the bottom friction coefficient is given by the Darcy-Weisbach friction
coefficient λ introduced in Section 5.3.1. At this point, we want to draw the
reader’s attention to the fact that the common hypothesis of (8.25) means
that the time-averaged bottom shear stresses are obtained from the time-mean
velocity field, instead of averaging the instantaneous shear stresses calculated
from the instantaneous velocity fields (cf. Equation (8.91)). We will discuss the
validity of this hypothesis in the context of shallow wake flows with predomi-
nating 2D LCS in Section 8.4.4.

The depth-averaged lateral stresses Tij include the effects of viscous friction,
of turbulent friction, and of momentum dispersion due to depth-averaging:

Tij =
1

h

∫ h

0
ν

(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)
−
〈
u′iu

′
j

〉
+
(
〈ui〉′ 〈uj〉′

)
dz , (8.26)

where ν is the kinematic viscosity of the fluid.
The Taylor analysis of mass dispersion showed that—at asymptotically

large times—the longitudinal dispersive flux is proportional to the longitudi-
nal gradient in the depth-averaged concentration. Extension to 2D shear flow
(Fischer et al., 1979, pp. 99) leads to the definition of a bulk dispersion
tensor,

Ṁx =

∫ h

0
〈u〉′ 〈c〉′ dz =

(
−Kxx

∂〈c〉
∂x

−Kxy
∂〈c〉
∂y

)
h (8.27a)

Ṁy =

∫ h

0
〈v〉′ 〈c〉′ dz =

(
−Kyx

∂〈c〉
∂x

−Kyy
∂〈c〉
∂y

)
h . (8.27b)

The mass dispersion coefficients Kij—accounting for the effects of depth vari-
ations in the horizontal velocity components on the depth-averaged tracer
concentration—can be calculated from the velocity deviation components and
from the vertical turbulent diffusivity Dtz,

Kxx = −1

h

∫ h

0
〈u〉′

∫ h

0

1

Dtz

∫ h

0
〈u〉′ dz dz dz , (8.28a)

Kxy = −1

h

∫ h

0
〈u〉′

∫ h

0

1

Dtz

∫ h

0
〈v〉′ dz dz dz , (8.28b)

Kyx = −1

h

∫ h

0
〈v〉′

∫ h

0

1

Dtz

∫ h

0
〈u〉′ dz dz dz , (8.28c)

Kyy = −1

h

∫ h

0
〈v〉′

∫ h

0

1

Dtz

∫ h

0
〈v〉′ dz dz dz . (8.28d)
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If a logarithmic velocity distribution applies, the vertical turbulent diffusivity
can be given as Dtz (z) = κu?z

(
1 − z

h

)
, where κ = 0.41 is the v. Kármán

constant, and u? is the bed friction velocity defined by (5.5). Since predicted
concentration distributions are not very sensitive to the variation of Dtz with
depth, the depth-averaged value Dtz = κ

6hu
? ≈ 0.067hu? may be employed

(Rutherford, 1994).
In the following, additional assumptions will be:

1. The flow is considered to be stationary, and the suspended tracer mass to
be conservative, thus all temporal derivatives vanish in Equations (8.21) to
(8.24).

2. The x direction of the coordinate system shall be aligned with the gradient
of the bottom. Thus, no transverse slope is present, S0y = 0, and the
transverse gravitational acceleration term vanishes.

3. The time-mean bottom shear stresses will be modelled using the time-mean
velocity distributions, (8.25). This widely used model has been employed
also by Lee & Jirka (1980) for the analysis of shallow jet flows.

4. Concerning the lateral shear stress terms, in turbulent flow usually the
effects of viscous shear are dominated by turbulent shear. Therefore, the
first integral term in (8.26) will be neglected. Also, and more question-
able, the dispersive effect of the depth-averaging, the so-called ‘differential
advection’ (Vreugdenhil, 1994), will be omitted.3

5. The molecular diffusion terms and the bulk mass dispersion terms occurring
in the tracer mass conservation equation (8.24) will be neglected.

Employing the above assumptions, and expanding the spatial mean deriv-
atives of the momentum equations (8.22) and (8.23) and of the mass conser-
vation equation (8.24) with the application of the continuity equation (8.21),
the set of 2D SWE, Equations (8.21) to (8.24), further simplifies to

∂ 〈u〉h
∂x

+
∂ 〈v〉h
∂y

= 0 , (8.29)

〈u〉 ∂ 〈u〉h
∂x

+ 〈v〉 ∂ 〈u〉h
∂y

+
∂
〈
u′2
〉
h

∂x
+
∂ 〈u′v′〉h

∂y

+ gh
∂h

∂x
− gh sinϑx +

λ

8
〈u〉
√

〈u〉2 + 〈v〉2 = 0 , (8.30)

3 According to Vreugdenhil (1994, pp. 36), besides the (negligibly small) viscous stresses
and the turbulent stresses, the differential advection terms may contribute to about 25%
to the lateral shear stresses. All attempts to include the dispersive effect of differential
advection into the 2D SWE have failed until 1994. Only recently Yulistiyanto et al.
(1998) presented calculations of the flow around a cylinder using shallow flow equations
including also the dispersive terms, which have been modelled in analogy to the bulk
mass dispersion Ṁ , (8.27). They stressed the importance to represent both the turbulent
diffusion and dispersion terms of the lateral stresses, (8.26), in a shallow wake flow.
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〈u〉 ∂ 〈v〉h
∂x

+ 〈v〉 ∂ 〈v〉h
∂y

+
∂ 〈u′v′〉h

∂x
+
∂
〈
v′2
〉
h

∂y

+ gh
∂h

∂y
+
λ

8
〈v〉
√
〈u〉2 + 〈v〉2 = 0 , (8.31)

〈u〉 ∂ 〈c〉h
∂x

+ 〈v〉 ∂ 〈c〉h
∂y

+
∂ 〈u′c′〉h

∂x
+
∂ 〈v′c′〉h

∂y
= 0 . (8.32)

8.2.1 Momentum deficit flux equation

We will further simplify the 2D momentum equations by adapting them to the
far field of a wake flow. Hence, we will make further use of scaling arguments, as
was already necessary for the deduction of the 2D SWE from the Navier-Stokes
equations in plane shear flow (e.g. Tennekes & Lumley, 1977).

In the time-mean wake far field the transverse velocity component is much
smaller than the longitudinal component, 〈v〉 � 〈u〉, and the longitudinal
gradients of the flow field are much smaller than the transverse gradients,
∂
∂x � ∂

∂y . Using these order–of–magnitude arguments we can approximate the
transverse momentum equation (8.31) by

∂
〈
v′2
〉
h

∂y
+ gh

∂h

∂y
= 0 . (8.33)

This equation is integrated over y, differentiated with respect to x, and finally
substituted in (8.30), which can now be written as

〈u〉 ∂ 〈u〉h
∂x

+ 〈v〉 ∂ 〈u〉h
∂y

+
∂

∂x

((〈
u′2
〉
−
〈
v′2
〉)
h
)

+
∂ 〈u′v′〉h

∂y
− gh sinϑx +

λ

8
〈u〉
√

〈u〉2 + 〈v〉2 = 0 . (8.34)

Again, from scaling reasons we can neglect the third term of (8.34), because in
the far wake the turbulence is regarded as horizontally isotropic, i.e.

〈
u′2
〉
∼〈

v′2
〉
. Hence, we obtain a single momentum equation,

〈u〉 ∂ 〈u〉h
∂x

+ 〈v〉 ∂ 〈u〉h
∂y

+
∂ 〈u′v′〉h

∂y
− gh sinϑx

+
λ

8
〈u〉
√

〈u〉2 + 〈v〉2 = 0 . (8.35)

Well outside the wake flow we encounter uniform flow conditions, i.e. 〈ua〉 =
ua and all horizontal derivatives of flow quantities are zero, ∂

∂x = 0 and ∂
∂y = 0.

The main velocity component approaches the ambient velocity ua. Thus, in
the ambient flow (8.35) becomes the balance between gravitational forces and
bottom shear,

− gh sinϑx +
λ

8
ua
√
u2
a = 0 . (8.36)
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Next, we subtract the ambient momentum balance (8.36) from the momentum
balance within the wake (8.35), which results in a momentum deficit equation

〈u〉 ∂ 〈u〉h
∂x

+ 〈v〉 ∂ 〈u〉h
∂y

+
∂ 〈u′v′〉h

∂y

+
λ

8

(
〈u〉
√

〈u〉2 + 〈v〉2 − u2
a

)
= 0 . (8.37)

In order to solve (8.37), we decompose u = ua − us. Since we assume the
ambient velocity to be independent of the x position, i.e. ua = const, its local
gradients vanish, and we can substitute

∂

∂xi
〈u〉 =

∂

∂xi
〈ua − us〉 = − ∂

∂xi
〈us〉 . (8.38)

Since continuity holds (Equation (8.29)), the advective terms of (8.37) are

− 〈u〉 ∂ 〈us〉h
∂x

− 〈v〉 ∂ 〈us〉h
∂y

= −∂ 〈u〉 〈us〉h
∂x

− ∂ 〈v us〉h
∂y

. (8.39)

Now, we substitute the advective terms in (8.37). Hence, the momentum deficit
equation results as

− ∂ 〈u〉 〈us〉h
∂x

− ∂ 〈v〉 〈us〉h
∂y

+
∂ 〈u′v′〉h

∂y

+
λ

8

((
ua − 〈us〉

)√
〈u〉2 + 〈v〉2 − u2

a

)
= 0 . (8.40)

In wake flows the velocity deficit the transverse velocity component 〈v〉 and
the Reynolds stresses 〈u′v′〉 are anti-symmetric with respect to the wake cen-
terline (x, y = 0), i.e. 〈v (−yu)〉 = −〈v (yu)〉 and 〈u′v′ (−yu)〉 = −〈u′v′ (yu)〉.
Therefore, if we perform an integration in the transverse direction on equation
(8.40), the second and third integral term will vanish. Transverse integration
of (8.40), thus, results in

∂

∂x

∞∫

−∞

〈u〉 〈us〉h dy =

−λ
8

∞∫

−∞

(
ua − 〈us〉

)√
〈u〉2 + 〈v〉2 − u2

a dy . (8.41)

Since in the far field
√

〈u〉2 + 〈v〉2 ≈ 〈u〉, the integral term on the right-hand
side can be transformed and approximated as

(
ua − 〈us〉

)
〈u〉 − u2

a = 〈us〉
(
2ua − 〈us〉

)

≈ 2 〈us〉
(
ua − 〈us〉

)
= 2 〈us〉 〈u〉 . (8.42)
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Hence, the above equation (8.41) becomes after expansion of the right-hand
side with the flow depth h

∂

∂x

∞∫

−∞

〈u〉 〈us〉h dy = − λ

4h

∞∫

−∞

〈us〉 〈u〉h dy . (8.43)

Here, the integral quantity is exactly the net specific momentum deficit flux, as
it has been defined in (8.9). Therefore, the integral equation for the momentum
finally reads

∂

∂x
Ms = − λ

4h
Ms . (8.44)

8.2.2 Flux equations for volume and tracer mass

Next, we will derive the conservation equation for the volume deficit flux pro-
ceeding from the Reynolds averaged 2D continuity equation (8.29). First, we
decompose u = ua− us. As noted in the previous section, since we assume the
ambient velocity to be a constant, its local gradients vanish. Thus, we sub-
stitute the advective terms of (8.29) by (8.38), integrate the equation in the
transverse direction, and obtain

− ∂

∂x
lim
yu→∞

yu∫

−yu

〈us〉h dy +
∂

∂y
lim
yu→∞

yu∫

−yu

〈v〉h dy = 0 . (8.45)

Since the first left-hand term of (8.45) is the longitudinal rate of change of
the volume deficit flux, we substitute the definition of the volume deficit flux
(8.11). Making use of the anti-symmetric behavior of 〈v〉 with respect to the
wake centerline, the second term can be reformulated as

∂

∂y

yu∫

−yu

〈v〉h dy =
[
〈v〉h

]yu
−yu

= 〈v (yu)〉h− 〈v (−yu)〉h

= 〈v (yu)〉h− (−〈v (yu)〉)h = 2 〈v (yu)〉h .

Hence, (8.45) results in

− ∂

∂x
Qs + 2h lim

yu→∞
〈v (yu)〉 = 0 . (8.46)

The second integral term of (8.45) represents an entrainment rate into the
wake at the wake boundary. Since lim

yu→±∞
〈v (yu)〉 = 0, the entrainment of

ambient fluid into the wake necessitates an approximation of (8.45) by bounded
integrals. Setting the upper bound yu = k

nδ relative to the wake half width
for both integral terms did not prove particularly helpful.4 Instead, we use a
4 Employing the Leibniz integral rule results in
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finite limit yu only for the second integral term, which leads—analogously to
(8.46)—to

− ∂

∂x
Qs + 2h 〈v (yu)〉 = 0 . (8.47)

The transverse velocity at the wake boundary, v(yu), is called an entrain-
ment velocity ve in order to quantify the specific flux of volume entrained from
the high velocity ambient flow into the wake.5 In jet flows the entrainment
velocity is commonly related to the centerline value of the longitudinal ex-
cess velocity as the characteristic velocity scale in jets (cf. Morton et al.
(1956), Lee & Jirka (1980)). In wake flows the corresponding characteristic
velocity is the main velocity deficit, thus, the entrainment velocity is given as
ve = −αusc.6 The entrainment coefficient α is of the order O(10−1) in self-
similar shear flows, if the entrainment velocity is evaluated at the 1/e half
width, following the commonly agreed usage of ve. Hence, the volume deficit
flux equation is

∂

∂x
Qs + 2α 〈usc〉h = 0 . (8.48)

If we introduce the definition of the complete volume flux (8.5) to Equa-
tion (8.48), we obtain an equation for the complete volume flux equation,

∂

∂x
(Qa −Q) + 2α 〈usc〉h = 0 ⇔

∂

∂x
Q− 2α 〈usc〉h = 0 . (8.49)

The balances of the volume deficit flux and of the complete volume flux
through a control volume from the initial cross-section of the wake flow to an
arbitrary downstream cross-section are obtained, respectively, as

Qs (x) = Qs0 − 2α

∫ x

0
〈usc〉h dx̃ , and (8.50a)

Q (x) = Q0 + 2α

∫ x

0
〈usc〉h dx̃ . (8.50b)

Finally, we will formally deduce the equation for the conservation of tracer
mass flux from (8.32). Due to scale arguments, also the longitudinal fluctuating
transport can be neglected in (8.32), and the tracer mass balance reduces to

〈u〉 ∂ 〈c〉h
∂x

+ 〈v〉 ∂ 〈c〉h
∂y

+
∂ 〈v′c′〉h

∂y
= 0 . (8.51)R yu

0

∂ 〈us〉h

∂x
dy − 〈us (yu)〉h

k

n

∂δ

∂x
= 〈v (yu)〉h .

5 In wake flows the velocity ve is directed inwards on both sides of the wake.
6 The negative sign arises from the definition of the velocity defect us = ua − u being a

positive quantity in wake flows.
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Now, we integrate (8.51) with respect to y. The first integral term represents
the longitudinal change of the mass flux Qc, as defined in (8.13). Since the
time- and depth-averaged mass concentration 〈c〉 and the transverse velocity
〈v〉 as well as the transverse turbulent mass flux 〈v′c′〉 are 0 outside the wake
(i.e. y → ±∞), the second and third integral terms cancel, so that

∂

∂x
Qc = 0 . (8.52)

The tracer mass is conserved, since we consider the tracer to be non-reactive
(i.e. conservative).

8.3 Solution of the system of flux equations

In the previous section we deduced a set of ordinary differential equations
for integral flux variables of the wake flow. With the solution of this set of
flux equations, and making use of characteristic wake properties, namely the
self-similarity and transverse Gaussian distribution, we derive a model for the
velocity and mass fields in a far wake flow.

In the following discussion we are always concerned with time- and depth-
averaged fields of velocity and mass. In order to improve the clarity of the
equations we omit the overbar and angular bracket notation unless otherwise
necessary.

8.3.1 Auxiliary relations for flux quantities

Before we start to solve the set of differential equations, we will briefly present
some relations between these flux variables. We will make use of these auxiliary
equations mainly to develop a descriptive model of the wake flow field from the
solutions of the flux equations, but also to close the set of flux equations. Again,
also because we will conduct integrations of the transverse distributions of us
and c, as introduced in Section 8.1.1, the derived analytical model is restricted
to flow regions, where self-similarity holds, and the flow field can be described
with Gaussian distributions.

Normalizing the fluxes of volume deficit, momentum deficit, and tracer
mass, Equations (8.11) to (8.13), with their corresponding initial values, Equa-
tions (8.14) to (8.16), we obtain

Ms

Ms0
=

√
π δnhusc

(
ua − usc√

2

)

√
π δ0n husc0

(
ua − usc0√

2

) =
δ

δ0

usc
usc0

(
ua − usc√

2

)

(
ua − usc0√

2

) , (8.53)

Qs
Qs0

=

√
π δnhusc√
π δ0n husc0

=
δ

δ0

usc
usc0

, (8.54)
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Qc
Qc0

=

√
π
rγδ
n h cc

(
ua − usc√

r2γ+1

)

√
π
rγδ0
n h cc0

(
ua − usc0√

r2γ+1

) =
δ

δ0

cc
cc0

(
ua − usc√

r2γ+1

)

(
ua − usc0√

r2γ+1

) . (8.55)

The ratio between momentum deficit flux and volume deficit flux reads

Ms

Qs
=

√
π δnhua usc −

√
π
2
δ
nhu

2
sc√

π δnhusc
= ua −

usc√
2

. (8.56)

For arbitrary initial conditions and for initial conditions at the downstream
stagnation point (i.e. us = ua) we obtain, respectively,

Ms0

Qs0
= ua −

usc0√
2

, (8.57)

M ′
s0

Q′
s0

= ua

(
1 − 1√

2

)
.

In non-dimensional form, this ratio can be written

Ms/Ms0

Qs/Qs0
=
M∗
s

Q∗
s

=
Ms/Qs
Ms0/Qs0

=

√
2ua − usc√
2ua − usc0

. (8.58)

For the ratio between the squared volume deficit flux and the momentum
deficit flux we find

Q2
s

Ms
=

√
π δnhusc

ua − usc√
2

. (8.59)

This yields for initial conditions at an arbitrary cross section and at the down-
stream stagnation point, respectively,

Q2
s0

Ms0
=

√
π δ0n husc0

ua − usc0√
2

, (8.60)

Q
′2
s0

M ′
s0

=

√
π δ0n h

1 − 1√
2

.

8.3.2 Set of flux equations

The set of ordinary differential equations to be solved consists of the momentum
deficit balance (8.44),

∂

∂x
Ms = − λ

4h
Ms ,

of the tracer mass balance (8.52),
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∂

∂x
Qc = 0 ,

and of the volume deficit balance (8.48),

∂

∂x
Qs + 2αusc h = 0 .

From the flux relation (8.56) we obtain

usc =
√

2

(
ua −

Ms

Qs

)
.

Substituting usc, volume deficit balance (8.48) becomes

∂

∂x
Qs + 2

√
2αh

(
ua −

Ms

Qs

)
= 0 . (8.61)

The solution to the momentum deficit equation (8.44) is

Ms = cI

(
− λ

4h

)
exp

(
− λ

4h
x

)
,

Using the boundary condition for the initial cross-section at x = 0, i.e. im-
plementing the initial momentum deficit Ms0 = − λ

4hcI exp (0), the momentum
deficit flux becomes

Ms = Ms0 exp

(
− λ

4h
x

)
. (8.62)

Equation (8.62) indicates the longitudinal decay of the momentum deficit due
to bottom friction. This recovery of momentum flux is a characteristic feature
of shallow wake flows. Obviously, following the above discussion, in unbounded
wake flows the momentum deficit flux is preserved, because we do not retain
any dissipative term then. Recall that viscous shear terms have already been
neglected in the lateral stress terms of Equations (8.30) and (8.31).

As mentioned above, the tracer mass balance (8.52) states that the mass
flux of a conservative tracer is conserved, i.e.

Qc = Qc0 = const . (8.63)

Re-arranging the volume deficit balance (8.61), the equation reads

Qs
∂

∂x
Qs + 2

√
2αhuaQs = 2

√
2αhMs .

Hence, we are concerned with a non-linear, non-homogeneous ordinary differ-
ential equation of first order without an analytical solution. Albeit the homoge-
neous differential equation has been solved, it was found impossible to present
also a solution for the full equation (e.g. by variation of variable). Therefore,
we will apply an appropriate numerical procedure to solve this equation (e.g. a
Runge–Kutta scheme or a predictor-corrector method like Adams–Moulton).
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8.3.3 Non-dimensional formulation of the set of conservation

equations and their solutions

In order to obtain a general solution for the fluxes of volume deficit, momentum
deficit, and tracer mass, we have to rewrite the set of differential equations in
non-dimensional form. We will normalize each quantity by its initial value.
Normalized quantities are denoted by ∗, e.g. Q∗

s = Qs
Qs0

. The non-dimensional

longitudinal coordinate is defined as x∗ = λx
4h .

From (8.44) and (8.62), the momentum deficit differential equation and its
solution using non-dimensional variables are, respectively,

∂

∂x∗
M∗
s = −M∗

s , (8.64)

M∗
s =

Ms

Ms0
= exp (−x∗) . (8.65)

For the tracer mass differential equation (8.52) and its solution (8.63), we
obtain in non-dimensional form, respectively,

∂

∂x∗
Q∗
c = 0 , (8.66)

Q∗
c = 1 . (8.67)

The volume deficit differential equation (8.61), for which no analytical solu-
tion exists, requires some additional definitions of non-dimensional parameters,
which we define in a manner similar to Jirka et al. (1986). These are related
to the strength of the wake flow, to the bottom friction7, and to the entrainment,
respectively,

Rm = usc0
Qs0
Ms0

=
usc0

ua − usc0√
2

, (8.68a)

φm =
λ

4h

Q2
s0

hMs0
=

λ

4h
Rm

Qs0
husc0

=
λ

4h

√
π
δ0
n
Rm , (8.68b)

am = 4
√

2
α

φm
. (8.68c)

Furthermore, from (8.58) we can deduce the non-dimensionalized centerline
defect velocity,

u∗sc =
usc
usc0

=
√

2
ua
usc0

− M∗
s

Q∗
s

(√
2
ua
usc0

− 1

)
. (8.69)

We now can transfer (8.48) into a preliminary normalized form,

7 The bottom friction parameter φm, Equation (8.68b), resembles a gradient stability num-
ber Sg (cf. Equation (2.4)) of the deficit flow field.
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∂

∂x∗
Q∗
s +

2αh

λ/8h

usc
Qsc0

= 0 ,

where the second term contains the non-dimensional centerline velocity defect
u∗sc. With some basic transformations we achieve the normalized volume deficit
differential equation corresponding to its dimensional form (8.61),

∂

∂x∗
Q∗
s +

a

2

(
1 +

Rm√
2
− M∗

s

Q∗
s

)
= 0 , (8.70)

where M∗
s = exp (−x∗).

Figure 8.2 shows the exponential decay of the log-scaled normalized mo-
mentum deficit M∗

s , Equation (8.65), along the roughness–scaled longitudinal
distance x∗, depicted by a full line. The development of the volume deficit flux
Q∗
s can be predicted by numerically solving Equation (8.70) for specific initial

and boundary conditions represented by the non-dimensional parameters φm,
Rm, and α. The downstream decay of Q∗

s, denoted by a dashed line, and thus
the recovery of the volume flux, is exemplified in Figure 8.2, as predicted us-
ing an explicit Runge–Kutta solver for Equation (8.70) with the parameter set
Rm = 0.226, φm = 0.039, and α = 0.098. The parameter values represent the
initial and boundary conditions of a simulation of the far wake data of series
18_vs06, where the initial cross-section has been located at x/D = 18.1.

8.3.4 Model equations for velocity and mass fields in wake flow

We will now present a set of equations to describe the depth-averaged time-
mean velocity and scalar fields of shallow turbulent far wakes. This will consist
of two equations to describe the self-similar transverse distribution of the ve-
locity deficit us and the scalar concentration c by Equations (8.1) and (8.2).
They are complemented by another three equations to calculate the longitu-
dinal development of the main centerline deficit velocity usc, of the wake half
width δ, and of the centerline mass concentration cc. For this purpose we em-
ploy the solutions to the set of conservation equations, and combine them with
integral solutions for these fluxes.

For the normalized momentum deficit differential equation (8.64) we gave
the analytical solution (8.65) for M∗

s . However, the normalized volume deficit
differential equation (8.70) has to be solved numerically for Q∗

s. Now, starting
with Equation (8.58) representing the ratio of normalized momentum and vol-
ume deficit M∗

s /Q
∗
s, we can deduce the centerline velocity deficit normalized

by its initial value,

usc
usc0

=
√

2
ua
usc0

Q∗
s −M∗

s

Q∗
s

+
M∗
s

Q∗
s

= 1 +

√
2

Rm

(
1 − M∗

s

Q∗
s

)
. (8.71)
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line. The volume deficit flux Q∗

s (dashed line) has been obtained from numerically solving
the governing differential equation (8.70) for a given set of initial and boundary parameters
Rm = 0.226, φm = 0.039, and α = 0.098, to give an example taken from a simulation of PIV
measurement series 18_vs06.

Using the second characteristic wake flow velocity, the ambient velocity ua, an
alternative formulation for the non-dimensional centerline velocity deficit is

usc
ua

=
usc0
ua

M∗
s

Q∗
s

+
√

2

(
1 − M∗

s

Q∗
s

)

=
√

2 − M∗
s

Q∗
s

2

Rm +
√

2
. (8.72)

From (8.54) we obtain the half width normalized with its initial value, from
substituting u∗sc by (8.71),

δ

δ0
= Q∗

s

(
usc
usc0

)−1

(8.73)

=
Q∗2
s

Rm+
√

2
Rm

(Q∗
s −M∗

s ) +M∗
s

.

The non-dimensional centerline mass concentration is evaluated from (8.55)
by substituting (8.73) as
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cc
cc0

=
1

Q∗
s

·
ua/usc0 − 1

/√
r2γ + 1

ua/usc − 1
/√

r2γ + 1
. (8.74)

where ua
usc0

= 1
R + 1√

2
, and ua

usc
is given by (8.72).

In conclusion, the set of equations describing the flow field and scalar field
of a shallow turbulent far wake consists of the equations (8.71), (8.73), (8.74),
(8.1), and (8.2). They depend on the deficit fluxes of volume and momentum,
Q∗
s and M∗

s , and on the initial and boundary conditions parameterized by the
model coefficients for wake strength, for bottom friction, for lateral entrain-
ment, and for mass diffusion, Rm, φm, α, and rγ .

8.3.5 Continuity equation in non-defect form

Since the volume deficit differential equation has to be solved numerically, we
will now derive an approximation, which leads to a differential equation with
an existing analytical solution. We will discuss the properties of the subsequent
volume deficit flux equation, and demonstrate the restrictions in its applica-
bility to the far field of shallow wake flows.

As already noted, the unbounded transverse integral of the main velocity
component does not exist. In this section, we will therefore approximate the
complete volume flux (8.5) by introducing a finite integral for the ambient
volume flux, so that

Q =

∫ ∞

−∞
uh dy =

∫ ∞

−∞
(ua − us)h dy

≈
∫ ye

−ye
ua h dy −

∫ ∞

−∞
us h dy , (8.75)

where ye =
√

π
2
δ
n denotes the magnitude of the lower and upper limits of

integration for the ambient volume flux. Evaluating the integral terms, we
obtain the following approximation8 for the volume flux,
8 An alternative and more consistent approximation of the complete volume flux (8.5) can

be introduced by

Q ≈ Q̃ =
R ye

−ye
(ua − us) h dy ,

where the limits of integration are ye = k δ/n. Using (8.3) in order to evaluate the trans-
verse integral of the Gaussian distribution of us, the volume flux approximation results
in

Q̃ =
�√

2ua − erf (k) usc
�√

π h
δ

n
,

which contains an error function in the velocity deficit term. However, for k =
p

π/2 and

erf
�p

π/2
�

= 0.9237 the value of Q̃ is close to the approximation presented in (8.76),

which justifies the more handy approximation (8.75).
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Q ≈
(√

2ua − usc

)√
π h

δ

n
. (8.76)

Making use of (8.76), the ratio between the momentum deficit flux and the
volume flux becomes

Ms

Q
≈
√

π
2
δ
nhusc

(√
2ua − usc

)
√
π δ
nh
(√

2ua − usc
) =

usc√
2

. (8.77)

We now substitute the expression for usc into the complete volume flux differ-
ential equation (8.49), which results in a non-linear homogeneous differential
equation of first order,

∂

∂x
Q− 2

√
2hα

Ms

Q
= 0 . (8.78)

In standardized form, the volume flux equation (8.78) is expressed as

∂

∂x∗
Q∗ − am

2

Q2
s0

Q2
0

M∗
s

Q∗ = 0 , (8.79)

where Q∗ = Q/Q0, M∗
s = Ms/Ms0, x∗ = λ/4x/h, and am has been given by

(8.68).
Because of its homogeneity we are able to solve this differential equation by

separation of variables and subsequent integration. The solution to (8.79) is

Q∗ 2 = −am
Q2
s0

Q2
0

exp (−x∗) + CI . (8.80)

In order to obtain a finite value for the initial volume flux Q0, we again employ
the volume flux approximation (8.75), which results in

Qs0
Q0

≈ usc0√
2ua − usc0

=
R√
2

. (8.81)

Hence, Equation (8.80) is approximated by

Q∗ 2 = −am
2
R2
m exp (−x∗) + CI . (8.82)

The integration constant CI can be evaluated from the boundary conditions.
Thus, we apply the initial conditions at x∗ = 0, where Q∗ = 1. Evaluating

(8.82) at x∗ = 0, the integration constant becomes

CI = 1 +
am
2
R2
m . (8.83)

The complete volume flux finally finally reads

Q∗ =

√
1 +

am
2
R2
m

(
1 − exp (−x∗)

)
. (8.84)

The limits of Q∗ are
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lim
x∗→0

Q∗ = 1 and lim
x∗→∞

Q∗ =

√
1 +

am
2
R2
m .

The latter one represents an absolute upper limit for the complete volume flux,
which conflicts with the boundless downstream growth of the wake flow.

Therefore, considering the outflow condition for x∗ → ∞ to check for con-
sistency of CI , we would obtain

lim
x∗→∞

Q∗ =
Qa
Q0

∣∣∣∣
∞

=
√
CI . (8.85)

Since the ambient volume flux has to be evaluated at an infinitely far down-
stream position, also the application of the volume flux approximation using
bounds of integration at ±yu, i.e. (8.75), leads to a limit of Qa/Q0 at infinity,
because the wake half width δ grows without restraint.

Qa
Q0

≈
√

2ua√
2ua − usc0

δ

δ0
=
Rm +

√
2√

2

δ

δ0
(8.86)

When we turn to the volume deficit flux, Q∗
s from Q∗ = (Qa −Qs) /Q0

becomes

Q∗
s =

Qs
Qs0

=
Q0

Qs0

(
Qa
Q0

−Q∗
)

. (8.87)

The ratio Q0/Qs0 is substituted by (8.81), and using the volume flux approx-

imation (8.75) we find Qa/Q0 ≈ R+
√

2√
2

δ
δ0

. Then, Q∗
s can be approximated by

Q∗
s =

√
2

Rm

(
Rm +

√
2√

2

δ

δ0
−Q∗

)
. (8.88)

Inserting the approximate solution for the complete volume flux, Equa-
tion (8.82), we obtain an approximation for the volume deficit flux as

Q∗
s =

(
1 +

√
2

Rm

)
δ

δ0
−
√

2

R2
m

+ am
(
1 − exp (−x∗)

)
. (8.89)

Both in (8.88) and (8.89) the volume deficit flux depends on the wake half width
δ introduced by Qa, and thus grows without constraint instead of tending to
zero.

Figure 8.3 shows the standardized complete volume flux Q∗ in the wake
computed from Equation (8.84). There are some shortcomings with the em-
ployed volume flux approximation (8.75). Firstly, boundary conditions could
only be used at the initial cross-section, but not in the outflow. Therefore,
secondly, the upper limit of Q∗ is not infinite, but bounded. Thirdly, the vol-
ume flux approximation that has been employed to obtain the approximative
solution does not allow for an explicit solution for the volume deficit flux.
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Therefore, in order to receive an appropriate solution to the continuity
differential equation (8.58) we have to employ some numerical procedure rather
than using an approximated analytical solution. Since the solution of this non-
dimensional equation (8.58) depends also on the additional non-dimensional
parameters Rm, φm, and α, Equations (8.68), we need an individual solution
for each set of parameters. Hence, it is necessary to employ the numerical solver
in each specific flow situation. The set of differential equations for the far wake
integral fluxes have been parameterized. However, an analytical solution for
the volume or volume deficit differential equations is still missing, and thus, a
purely analytical scheme for a far wake integral model.

8.4 Application of integral far wake model

In the following section we want to demonstrate the applicability of the integral
model for shallow turbulent far wakes. Firstly, we will show, how the various
non-dimensional parameters influence the solutions of the conservation flux
equations. Secondly, we will compare the model prediction for the momentum
deficit and volume deficit flux to experimental data, which were evaluated from
PIV measurements of shallow wake flows conducted in the laboratory. We will,
thirdly, show the model solutions for a wake flow field of velocity and tracer
mass. Finally, we try to verify the assumptions used to derive the integral
model and, thus, deduce some information on the limits of application as well
as on promising aspects to further improve the model.
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8.4.1 Sensitivity to variation of non-dimensional parameters

From the set of normalized flux conservation equations for the integral model
we state that the momentum deficit equation (8.65) and the tracer mass equa-
tion (8.67) contain just one dependent variable x∗, whereas the volume deficit
differential equation (8.70) features additional non-dimensional parameters
characterizing the wake flow. These are φm, Rm, and am (cf. Equations (8.68))
related to the bottom shear, the horizontal shear induced by an obstacle, and
the lateral entrainment, respectively. In Figures 8.4 to 8.6 we use a numeri-
cal procedure to compute the solution of (8.70) for different values of one the
additional non-dimensional parameters φm, Rm, and α in each figure while
keeping default values for the remaining parameters. The default values are
Rm = 0.175 (i.e usc0 = 0.2ua), λ = 0.033, φm = 0.04, α = 0.098, and thus
am = 3.53, they are based on measured wake data of series 18_vs06.

The influences of the bottom friction on the wake flow field are two-fold,
as is obvious from the normalized volume deficit differential equation (8.70).
Primarily, we use the longitudinal coordinate x∗ = λ

4
x
h normalized by the

frictional length scale to represent the damping and dissipating effect of the
vertical shear. Moreover, being part of am, the bottom shear is also introduced
independently of x∗ in the parameter φm, which compares specific boundary
conditions of the wake flow, namely the effects of vertical and transverse shear
flow. As mentioned in Section 8.3.3, φm is closely related to the gradient sta-
bility number Sg. Figure 8.4(a) shows the development of Qs(x∗) for different
values of the Darcy–Weisbach friction coefficient λ. Over a smooth bottom the
volume deficit decreases much faster with the roughness–scaled downstream
distance x∗ than over a rough bottom. This apparent contradiction to our in-
tuition can be eliminated, if we take into account that for the friction length
scale, which we used to normalize x, we obtain larger values over a rough bot-
tom. With respect to the absolute distance x the volume deficit flux decreases
more slowly for reduced bottom friction, as illustrated in Figure 8.4(b). Here,
the same data as used for Figure 8.4(a) is plotted over the lateral–shear–scaled
distance x/D, i.e. normalized with the constant cylinder diameter.

The second additional non-dimensional parameter in the volume deficit dif-
ferential equation concerns the initial strength of the wake represented by the
ratio of the initial velocity deficit and the ambient velocity usc0

ua
, which is trans-

formed into the strength parameter Rm and also present in the combined factor
am. Variation of Rm is induced either by different ambient velocities ua, or by
the choice of the position of the initial cross-section, where the initial condi-
tions for the wake model are defined. We can think of the position of the initial
cross-section as the shortest distance from the obstacle for the applicability of
the integral far wake model. A ratio usc0

ua
= 1 or Rm = 3.41 indicates an ab-

solute velocity of 0, as it is found at a stagnation point in the flow field. In wake
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Figure 8.4. Sensitivity of volume deficit flux Qs to variation of bottom friction coefficient
λ. We numerically solve the volume deficit flux equation (8.70) for different values of λ
between 0.01 and 0.08, inducing a change also in φm, and in am. The other non-dimensional
parameters are kept constant at Rm = 0.175 (i.e usc0 = 0.2ua), and α = 0.098. In Figure (a)
Q∗

s is plotted over the roughness–scaled downstream distance λ/4x/h that also varies with
the change of λ. In Figure (b) the same values of Q∗

s are associated with the lateral–shear–
scaled distance x/D, which is independent of λ.
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flows a stagnation point will always occur at the downstream end of the obsta-
cle. Of course, if there exists a recirculation zone downstream of the obstacle,
a second stagnation point will be encountered downstream in the wake flow
field. Since the assumption of Gaussian distributed values of velocity and scalar
does not hold close to the source of the wake (i.e. the obstacle, and eventually,
the attached recirculation bubble), it might be necessary for the applicability
of the wake model to locate the initial cross-section more downstream, which
results in smaller values of usc0

ua
and of Rm.

In Figure 8.5(a), Qs(x∗) is plotted for initial velocity ratios of 0.50, 0.25,
and 0.10, or wake strength parameters Rm of 0.369, 0.212, and 0.093, respec-
tively. The different values of Rm for the numerical calculations were selected—
according to experimental data of an arbitrary wake flow (series 18_vs06)—by
choosing different positions of the initial cross-section, and thus by variation
of usc0 for constant ua, instead of varying ua for a constant usc0. For higher
values of Rm we observe a stronger initial decrease of the volume deficit flux
followed downstream by a mild asymptotic approach toward zero deficit. For
lower values of Rm we observe a more gradual decrease as the volume deficit
flux vanishes. Again we should point out, that Qs is normalized by its initial
value Qs0, which depends on the position of the initial cross-section and is
therefore related to the value of Rm.

Hence, a dimensional representation, preserving the absolute values of Qs,
is given in Figure 8.5(b). The downstream distance is given with respect to the
obstacle, thus to the origin of x∗ at the initial cross-section the off-set distance
to the center of the obstacle has been added, i.e. x∗off +x∗ = λ/4 (xoff + x) /h.
Four different values of usc0/ua, 0.5, 0.25, 0.15, 0.1, or values of Rm, 0.369,
0.212, 0.136, 0.093, correspond to different initial cross-sections located at
x/D = 1.9, 11.6, 23.2, 31.0 in the vortex street-like wake flow, series 18_vs06.
For this range of Rm, and keeping all other parameters constant, the volume
deficit fluxes have been calculated from the integral far wake model, which
implies a self-similar transverse distribution of us. Depending on the position
of the initial cross-section, i.e. on Rm, a different development of Qs has been
predicted for high values of Rm, as they occur in the near and transitional
wake regions of development and decay of 2D LCS. However, for usc . 0.15ua
the predictions become consistent, as indicated by the two dash–dotted lines.
This region can be associated with the wake far field below x/D = 25, where
large-scale vortical structures have disintegrated almost completely.

Additionally, an increase of the initial volume deficit flux Qs0 in the near
field can be observed from the predictions for usc0/ua = 0.5, 0.25 at x/D =
1.9, 11.6. This might be addressed on the one hand to detrainment of wake
fluid into the ambient flow in the near field of wake development, as is also
indicated by the development of the entrainment coefficient α. On the other
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Figure 8.5. Sensitivity of volume deficit flux Qs to variation of wake strength Rm. The
volume deficit flux equation (8.70) is numerically solved for different values of Rm between
0.37 and 0.09, inducing a change also in φm, and in am. The other non-dimensional para-
meters are kept constant at Rm = 0.175 (i.e usc0 = 0.2ua), and α = 0.098. Variation of
Rm is realized by changing usc0 and keeping ua constant. In Figure (a) standardized values
Q∗

s = Qs/Qs0 are plotted over the roughness–scaled downstream distance. Since a variation
of Rm also changes Qs0, Figure (b) depicts absolute values Qs plotted over the downstream
distance with respect to the center of the obstacle.
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Figure 8.6. Sensitivity of volume deficit flux Qs to variation of entrainment coefficient α.
The volume deficit flux equation (8.70) is numerically solved for different values of α between
0.01 and 0.1, inducing a change also in am. The other non-dimensional parameters are kept
constant at Rm = 0.175 (i.e usc0 = 0.2ua), and λ = 0.033.

hand, in the developing near wake velocity profiles are not jet self-similar, and
probably steeper than Gaussian.

The entrainment of higher velocity fluid from the ambient flow into the
wake region is represented by the entrainment coefficient am in this model.
This is the third additional dependent variable in the volume deficit flux dif-
ferential equation. Figure 8.6 illustrates the influence of α on the longitudinal
development of Q∗

s. As expected, a larger value of the entrainment rate yields
a faster reduction of the volume deficit flux, and a faster recovery of the flow.

8.4.2 Prediction of momentum deficit and volume deficit fluxes and

comparison to experimental data

For various shallow turbulent wake flows we conducted laboratory experiments,
which provide detailed information concerning the properties of the velocity
and scalar fields. From our experimental data we are able to compute the
same flux quantities, which we also calculate with the integral wake model.
The normalized volume deficit flux Q∗

s and the momentum deficit flux M∗
s are

presented in Figures 8.7 and 8.8 for two selected flow configurations together
with the appropriate analytical and numerical solutions for the given initial
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and boundary conditions.9 We have seen before that it takes 1 to 3 frictional
length units x∗ both for the momentum deficit flux and for the volume deficit
flux to vanish, that is for the wake flow to recover. Unfortunately, from the
experimental data we have evidence only up to x∗ ≈ 0.4 due to the restrictions
in laboratory space. Since the selection of appropriate initial conditions of
the wake is essential to the prediction of the further development of the flow,
because we have to satisfy the assumptions of the proposed far wake model,
it might be necessary to start well downstream of the immediate near field.
Even if the experimental data, which cover especially the initial stage of the
wake development, provide initial conditions sufficiently far downstream, we
still lack data to verify the proper performance of the integral model in the far
wake. Nevertheless, we can still increase our confidence in the model observing
from the initial stage of the wake. Furthermore, we may gain insight to the
transition between near field and far field of the wake.

Figure 8.7 depicts Q∗
s and M∗

s for a wake flow, which does not show any sig-
nificant recirculation bubble behind the cylindrical obstacle. In this case (series
38_vs01, S = 0.01) we observe a vortex-street like wake with the formation
of 2D coherent vortical structures, which are very persistent in the wake flow.
The maximum value of the ratio usc/ua is only about 25%. In order to normal-
ize the data, and also for the initial conditions of the numerical solutions, we
locate the initial cross-section at x/D = 25.1, where usc0

ua
= 0.208. The mea-

sured fluxes both of volume deficit and of momentum deficit increase—through
the regions of the developing near wake and of the 2D LCS–dominated inter-
mediate wake—up to a distance of about 20 D, then reach a constant value
over some distance, before the disintegration of the wake starts. The initial
cross-section is located shortly downstream of the beginning of the decrease at
x/D = 25.1 corresponding to a frictional distance x∗ = 0.28. The entrainment
coefficient α = 0.026 has been adjusted to obtain the most suitable reproduc-
tion also of the centerline velocity deficit u∗sc and the wake half width δ∗u, as
shown in Figure 8.9. Though α displays a very low value in this wake flow, it
has been verified from velocity measurements (cf. Section 8.4.4).

The second wake flow configuration (series 18_vs06) is comparable to the
first one with respect to the generation and arrangement of 2D coherent struc-
tures in a vortex-street like manner, but these are not as strong and persistent
as in the first case (S = 0.06). Although also in this case we do not observe a
permanent region of flow recirculation behind the cylinder, we have evidence
for the development of a recirculation bubble from the centerline velocity deficit
approaching zero near the obstacle, i.e. usc/ua → 1 for x/D → 0.5. Figure 8.8
again shows the deficit fluxes computed from the PIV data. Both cases display

9 We will continue the comparison for the same flow configurations in the next section with
characteristic wake flow quantities.
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Figure 8.7. Volume and momentum deficit fluxes for a vortex street-like wake flow, S =
0.01, (series 38_vs01). Initial conditions for the integral wake model are evaluated from
cross-section at x/D = 25.1, esp. usc0

ua
= 0.208. The entrainment coefficient adapted for the

data is surprisingly low, α = 0.026.
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Figure 8.8. Volume and momentum deficit fluxes for a vortex street-like wake flow,
S = 0.06, tending to maintain a permanent recirculation bubble. (series 18_vs06). Initial
conditions for the integral wake model are evaluated from cross-section at x/D = 18.1, esp.
usc0

ua
= 0.195. The entrainment coefficient adapted for the data is α = 0.098.
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a similar behavior, however, neither the lateral–shear–scale nor the bottom–
friction–scale seem to be the proper scaling for the near field development. In
this case the initial cross-section has been located well in the region of wake
recovery at x/D = 18.1, where usc0

ua
= 0.195. The entrainment coefficient was

found to be α = 0.098—again in gross agreement with appropriate velocity
measurements. The decay both of M∗

s and Q∗
s is slightly over-estimated far

downstream of the obstacle with the applied set of parameters, though α, Rm,
and λ have been obtained or verified from experimental data. Since also M∗

s ,
depending only on x∗, is affected, decreasing the bed roughness and thus the
bottom friction coefficient would be appropriate. However, λ would have to be
reduced from 0.0328—a value that corresponds to almost hydraulically smooth
flow conditions at the given Reh—to about 0.024, which is physically impos-
sible because it is clearly lower than the corresponding smooth bottom value.
In order to meet the u∗sc and δ∗ developments, also the entrainment coefficient
would have to be reduced to α = 0.07—still in the range of values calculated
from velocity data.

8.4.3 Prediction of velocity and scalar fields

Since the main purpose of the integral wake model is the prediction of the
wake flow field, in Section 8.2 we derived a set of equations using the solutions
of the deficit flux equations to describe the mean wake far fields for the main
flow velocity component and a scalar quantity. We will verify now, how well
the integral wake model will predict these flow field information for the flow
conditions, which we already used to compare the deficit flux predictions.

In Figures 8.9 and 8.10 we compare the predicted longitudinal development
of the centerline velocity deficit and of the wake half width to data obtained
from wake flow measurements. As for the preceding section, the flow con-
ditions correspond to a pure vortex street-like shallow wake with S = 0.01
(series 38_vs01), and to a vortex street-like wake with a tendency to grow
a permanent recirculation bubble (series 18_vs06), respectively. Data for the
wake half width, δu and δγ , have been calculated from the time-mean fields of
velocity u, and of mass concentration c. In the wake far field the width ratio
rγ = δγ/δu is found to be independent of the downstream position. For the
first case of a pure VS wake shown in Figure 8.9 we observe good agreement of
the model predictions with the experimental data both for u∗sc and for δ. In the
second VS wake tending to build up a permanent recirculation bubble, shown
in Figure 8.10, the decay of usc and the growth of δ are slightly over-predicted.
This corresponds to the findings for the prediction of the deficit fluxes (cf.
Figure 8.8).

Figure 8.10 illustrates the flow field behavior for a wake flow with an existing
recirculation bubble and weaker (but still very distinct) 2D coherent vortical
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structures. From Figure 8.8 we know, that for these flow conditions the deficit
fluxes of volume and momentum have only a weak tendency to decrease, they
are almost preserved after an initial stage up to x∗ ≈ 0.2. This is also visible
in the normalized centerline velocity deficit u∗sc being constant over a long
range of x∗. As expected we cannot reproduce this behavior with the numerical
model with the current values for the non-dimensional parameters α and φm.
The reason, why we still apply these values, is that they lead to a correct
prediction of the wake half-width, which is growing despite the constancy of
the deficit fluxes and velocity. Though we do not fully understand this specific
wake flow development,10 we can agree that finally the wake will be dissipated
by the mechanisms of vertical shear. Also in this case we should therefore not
conclude that the integral model would not work properly more downstream
in the far field of the wake.

8.4.4 Discussion of model assumptions

In this section we will briefly discuss some essential assumptions for the ap-
plication of the integral wake model. Concerning the physical grounds of the
arising questions, further light will be shed throughout Part III.

Transverse distribution of u and c. For the derivation of the integral
wake model we presumed the main velocity component as well as a scalar
quantity to show a self-similar development and to be normally distributed in
the transverse direction. If we employ appropriate scaling quantities for the
standardization—for instance the velocity deficit u+

s = us
usc

and the transverse
distance y+ = y

δu
—, self-similarity means that the normalized transverse dis-

tribution is independent of the longitudinal distance x, or to be more precise

10 If we would argue about the reasons for this conservation of deficit quantities, we should
surely consider the existence of 2D coherent structures. They do not only scale with
the roughness length scale 4h/λ, but their life span, until they disintegrate, depends
strongly on the length scale related to the generation of the horizontal shear, namely
the cylinder diameter D. x∗ = 0.3 in this case corresponds to x/D = 8.5, whereas for
the first case with stronger 2D coherent structures the same x∗ yields x/D = 54.0. As
stated in v. Carmer & Jirka (2001) after 10 to 20 x/D the turbulent kinetic energy,
extracted from the ambient flow and mainly transferred to the motion of the coherent
structures, is dissipated again. After this distance we would thus expect the wake flow to
be controlled by the vertical shear again and the integral model to be applicable, whereas
the existence of 2D coherent vortical structures involves additional dynamic effects, which
are not taken into account in the numerical model. In the first case, x/D = 20 corresponds
with x∗ ≈ 0.11, by that distance the maximum deficit fluxes are reached and maintained
over some distance, so we encounter a similar behavior in both cases. We may distinguish
three regions in a shallow wake, namely the immediate near field, where the wake is
generated, a transitional region dominated by large-scale coherent structures, and the far
field dominated by small-scale bottom induce turbulence. In the first case we can observe
the wake passing through all three regions, whereas in the second case we do not enter
the third stage of the wake far field, for which the integral model is intended primarily.
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Figure 8.9. Characteristic flow properties for a vortex street-like wake flow, S = 0.01,
(series 38_vs01). For initial and boundary conditions see Figure 8.7. The wake half width
displayed in Figure (a) is computed either from the velocity and mass concentration fields,
δu and δγ . The concentration-based half width δγ is reduced by the width ratio rγ = 1.23.
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Figure 8.10. Characteristic flow properties for a vortex street-like wake flow, S = 0.06,
tending to maintain a permanent recirculation bubble. (series 18_vs06). For initial and
boundary conditions see Figure 8.8. The wake half width displayed in Figure (a) is computed
either from the velocity and mass concentration fields, δu and δγ . The concentration-based
half width δγ is reduced by the width ratio rγ = 1.64.
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that the dependency on x is incorporated in the scaling variables, thus (cf.
Equation (8.1))

u+
s = fu

(
y+
)

us (x, y)

usc (x)
= exp

(
−
(
n

y

δu (x)

)2
)

.

Analogously, the self-similar transverse distribution of tracer mass becomes (cf.
Equation (8.2)),

c+ = fc
(
y+
)

c (x, y)

cc (x)
= exp

(
−
(
n

y

δγ (x)

)2
)

,

where further use can be made of a constant ratio of the wake half widths
based on velocity and on mass concentration, δγ = rγ δu.

The second lines of the above equations state, that these self-similarly dis-
tributed quantities show a Gaussian distribution in the transverse normalized
direction y+. Figure 8.11 displays the spatial average of several transverse
profiles of the normalized velocity deficit for the first case of a shallow wake
showing strong 2D coherent structures. Since all transverse distributions, eval-
uated at different distances downstream of the cylinder between x/D = 8 and
x/D = 32, collapse on a single curve denoted by �, this figure confirms the
self-similarity and proper normalization of us/usc. In the integral wake model
the velocity deficit is assumed to follow a Gaussian distribution (8.1) in the
transverse direction, which is confirmed from Figure 8.11, where a bold line
indicates the solution of Equation (8.1). The prediction assuming a normal
distribution slightly overestimates the experimental data at the outer edges
of the wake around y+ ≈ ±1.8. We will address this fact in Section 9.1, but
also refer to Tennekes & Lumley (1977, pp. 117) or Pope (2000, pp. 119,
149). Furthermore, we will demonstrate in Section 9.1 that self-similarity and
Gaussian distribution in the transverse direction are restricted to a distinct
wake region associated mainly with the far field.

Turbulent mixing and lateral entrainment. Another important question
concerns the implementation of transverse spreading by virtue of mixing and
entrainment both of volume deficit and of tracer mass. Throughout this chap-
ter we are concerned with the development and application of an integral wake
model. Therefore, we do not need to examine the transverse flux of turbu-
lent x-momentum 〈u′v′〉 explicitly, because the transverse integration of the
Reynolds shear stress yields a net value of zero in the momentum deficit dif-
ferential equation. Moreover, the Gaussian transverse distribution of us/us0
includes a constant–viscosity hypothesis to model the turbulent stresses 〈u′v′〉
(cf. Section 9.1).
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Figure 8.11. Distribution of normalized velocity deficit u+
s = us/usc along the normalized

transverse direction y+ = y/δu (v. Carmer et al., 2001). � symbols depict the longitudi-
nal average of measured velocity deficit cross-profiles for different locations at 8 ≤ x/D ≤ 32
in the wake of series 38_vs01. Since all normalized profiles collapse on the same distribu-
tion, self-similarity holds. The bold full line represents the Gaussian distribution computed
from Equation (8.1) and well predicts the measured profiles despite some deviation near the
boundary of the wake.

In order to represent the transverse spreading in the differential equation
of the volume deficit flux, we used an entrainment hypothesis first presented
by G. I. Taylor, as reported by Morton et al. (1956). This is to relate the
rate of inflow of ambient fluid into the shear flow to a local property of the
shear flow, especially to its local mean velocity difference. Applied to a wake
flow, this hypothesis says that the inflow velocity of diluting water into any
wake would be proportional to the maximum mean velocity deficit usc in the
wake at the cross–section of inflow (cf. also Fischer et al. (1979) for jet
flows). As a constant of proportionality the entrainment coefficient α has been
introduced, for the application of this concept to the volume deficit flux we
refer to Section 8.2.2. It is essential to note, that we assume the entrainment
coefficient to be a constant value, i.e. α 6= f (x).

In order to empirically prove this assumption, in agreement with the com-
monly used definition, we evaluated local values α (x) directly at the transverse
positions y+ = y/δu = 1. The entrainment rate then depends on the local
transverse velocity component v (x, δ), called the entrainment velocity ve, and
thus depends on the definition of the wake half-width. Following the common
definition ve is evaluated at y = ±δ1/e. Hence the entrainment coefficient is
given as
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α (x) =
v
(
x, δ1/e

)

usc (x)
=

ve (x)

usc (x)
. (8.90)

Figure 8.12 shows the downstream development of α (x) for the pure VS
wake (series 38_vs01) and for the bubble–tending VS wake (series 18_vs06).
Values of α have been calculated from the velocity data separately in both
lateral shear layers of the wake. For each downstream position corresponding
values have been averaged, i.e. α (x) = 1/2 (αle (x) + αri (x)). Here, a positive
sign of α means entrainment into the wake, while a negative sign denotes
detrainment of wake fluid into the ambient flow. Note that x is standardized
by the momentum deficit length scale `m =

√
Ms0/u

2
a defined in (9.1). Though

care has to be exercised in quantitative analyzing the results11, we recognize
that α does not have a constant value. In the wake near field α rapidly decreases
from high initial values with α > 0.2 indicating significant entrainment of
ambient fluid during the development of the wake and the 2D LCS. After
approximately 5 x/D α drops below zero and continues to decrease up to
x/D ≈ 7.5, then increases again. Thus, the transitional region characterized
by the advection and decay of large 2D coherent structures even shows a net
detrainment of wake fluid into the ambient flow resulting in an increase of
the volume deficit flux Qs, as indicated in Figures 8.7 and 8.8. In the far
field the increase stops as the LCS disintegrate. The positive value of α is
expected to asymptotically tend to zero far downstream of the obstacle as
the flow deficit constituting the wake flow finally vanishes. However, due to
the restricted experimental accuracy in the transverse velocity, it can not be
decided whether α remains constant or tends to zero. In the latter case a linear
decay law could be given for the far wake development of α in analogy to the
asymptotic wake regime of axisymmetric jets (Jirka, 2004) as

α = α1 + α2
ua

ua − usc

which relates α to the local wake strength. Contrarily, in the intermediate wake

region, α is inversely proportional to the above ratio, i.e. α ∝
(

ua
ua−usc

)−1
=

(
ua
uc

)−1
.

Dissipation due to bottom friction. The implementation of the bottom
friction in the momentum equations of the SWE is another question that

11 We observe significant differences between corresponding α on both sides of the wake
that stem from uncertainties in the experimental evaluation of the transverse velocity
component v. Time-mean transverse velocities 〈v〉 are of the order of 1 mm/s in the
wake far field. Unfortunately, due to small imperfections of the bed topography revealing
minor variations of the bottom elevation transverse flow velocities are induced that for an
undisturbed shallow flow are of the same order of magnitude. These errors in the transverse
velocities show up more significantly when normalized with the centerline deficit velocity
usc, which acquires diminishing values far downstream of the cylinder.
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Figure 8.12. Longitudinal development of entrainment coefficient α. From data of measure-
ment series 38_vs01 and 18_vs06 entrainment coefficients have been evaluated separately on
both sides of the wake, and averaged for each downstream position. A positive sign denotes
entrainment of ambient fluid into the wake flow. Contrary to the entrainment hypothesis,
α is not a constant, but varies with the longitudinal distance x. Due to restrictions in the
experimental accuracy of v, the results should not be employed to calibrate far field values
of α.

demands further attention. In the Reynolds averaged 2D SWE for the x- and
y-momentum, Equations (8.30) and (8.31), we expressed the influence of the
bottom shear employing Equation (8.25). By doing so we evaluated the bottom
shear from the mean velocity field 〈u〉 only, which is the usual approach (e.g.
Vreugdenhil, 1994) .

Unfortunately, this commonly used approximation for boundary layer flow
is valid only for flow without predominant periodic large-scale motions, be-
cause the vertical shear stresses are deducted from the mean flow field only.
Contrary to plane boundary layer flows, the shallow wake flows examined in
this work show significant large-scale coherent vortical structures. These ed-
dies contain a reasonable part of turbulent kinetic energy, which is dissipated
mainly at the bottom as they advect downstream. Therefore, by the above
approximation the frictional losses will be underestimated severely in the tran-
sitional region of the wake due to the neglect of the coherent vortical motion,
whereas in the far field this assumption will hold more accurately, since the
vortical structures constituting the periodic–advective flow are already dissi-
pated, and thus frictional losses are solely induced by bottom shear due to the
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mean–advective flow. Especially in the transitional region, the time-resolved
averaged representation of the mean shear stresses in the form

〈τbx〉
ρ

=
λ

8

〈
u
√
u2 + v2

〉
and

〈τby〉
ρ

=
λ

8

〈
v
√
u2 + v2

〉
, (8.91)

should give better results compared to using only the mean flow field. The
difficulty of computing the shear stresses in a vortex street-like shallow wake
flow is comparable to modeling tidal stresses. Though there might be possi-
bilities to represent also these slowly fluctuating motions by a stress term of
some sort (cf. e.g. Vreugdenhil (1994)), it would still be questionable how
to implement it into a quasi-1D model.

The implications of using the time-resolved averaged formulation for the
mean shear stress in the SWE are delicate, and of course the derivation of
the simple differential equation for the momentum deficit, as presented in Sec-
tion 8.2.1, would be impossible. Using the simplified Reynolds averaged bot-
tom shear not only leads to an underestimation of the shear stress term in
the x–momentum equation, but has further shortcomings. In the transverse
momentum equation (8.33), the bottom friction term is completely neglected,
as is acceptable for mean transverse velocities 〈v〉 � 〈u〉. Though in shallow
wakes outside the immediate near field, this assumption is always valid for the
mean flow field 〈u〉, the periodic counter-rotating vortices in the vortex street-
like transitional wake region induce large additional velocity components—
provoking significant periodic fields of bottom shear stress—, which cancel out
only when averaging over a whole vortex shedding cycle. For the same argu-
ment, the magnitude of the velocity vector might not be approximated by the

main velocity component |u| ≈
√

〈u〉2 + 〈v〉2 ≈ 〈u〉, as applied in (8.37) in
flows, where significant variations occur in the time– or phase–resolved velocity
fields.

Since on one hand we are not able to sustain the complete Reynolds aver-
aged bottom shear terms in the 2D SWE, on the other hand using the mean
shear approximation introduces significant inaccuracies, we try to reduce them
by suggesting the following compromise. First, the magnitude of the average

velocity vector reads 〈|u|〉 =
〈√

u2 + v2
〉

=
√
〈u2〉 + 〈v2〉 . Second, when using

a velocity component for the evaluation of an averaged shear stress term, we
want to consider only its magnitude, but not its direction, as our final interest
is to reproduce energy losses. Thus, we propose another approximation of the
full shear stress terms in the longitudinal and transverse direction, respectively,

〈τbx〉
ρ

=
λ

8
〈|u|〉

√
〈u2〉 + 〈v2〉 and

〈τby〉
ρ

=
λ

8
〈|v|〉

√
〈u2〉 + 〈v2〉 . (8.92)
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We want to stress the importance of the LCS in the transitional wake region
also on the Reynolds averaged flow fields by evaluating the transverse bottom
shear stresses from the time–mean, from the phase–resolved, and from the
time–resolved velocity fields. In Figure 8.13(a) the magnitude of the phase–
resolved transverse velocity component v(φ) is shown for a given phase angle
φ in the shedding cycle of the large-scale coherent structures in the wake.
Since v(φ) amounts to more than 30% of the vector magnitude |u(φ)|, and
the transverse shear is of the same magnitude compared to the total shear, it
is therefore not a negligible quantity. Note, that v(φ) reveals the large-scale
vortices in the alternate change of the flow direction. Obviously, the amount of
energy dissipated at the bottom does not depend on the flow direction. If we
would take the average of the transverse motion over the full phase retaining
the direction and thus the sign of v, this would result in a vanishing v-field
due to the periodicity of the flow. In Figure 8.13(b) we compare the average
transverse and main shear fields evaluated from absolute values of the phase
resolved shear 〈|τby(φ)|〉 / 〈|τbx(φ)|〉 using (8.92). As the dissipation of turbulent
kinetic energy is a scalar quantity, which does not depend on the direction of
the flow, we computed the average from the absolute values of the phase–
resolved velocity. In the presence of the vortex street-like wake we notice a
significant amount of absolute shear stress, which shifts downstream during
the shedding cycle of the vortical structures. In Figure 8.13(c) we present the
evaluation of the absolute bottom shear fields averaged over the whole data
set using (8.92), in contrast to the evaluation given in Figure 8.13(b) based
on the phase–resolved re-sampled flow fields. We notice, that the process of
phase–resolved re-sampling does not alter the qualitative behavior and only
slightly underestimates the real shear stresses, since the high-frequent small-
scale fluctuations are suppressed. On the contrary, Figure 8.13(d) depicts the
appropriate values computed from the approximative approach using only the
mean velocity fields. Due to the vanishing mean transverse component | 〈v〉 | the
mean transverse shear is of minor influence and is not sufficient to represent
the dissipation of turbulent kinetic energy stored in the large-scale vortical
structures. In conclusion, in periodic flows it is essential to evaluate the average
transverse bottom shear stress from the absolute values of a time series. If we
do so, we have to take care about the large-scale vortical motions, neglecting
the fluctuating part yields a large error. If we do not average over absolute
values, we will underestimate the frictional losses regardless, whether we keep
the fluctuating velocity fields or not. As a consequence in order to model the
frictional losses using time-mean flow fields in predominantly periodic flows or
in shallow flows with predominant 2D LCS, the bed friction coefficient λ has to
be increased to much higher values than predicted from the bottom roughness.
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Figure 8.13. Normalized transverse bottom shear τby/τbx in the transitional wake region.
Figure (a) shows the magnitude of the standardized phase–resolved transverse velocity com-

ponent vp(φ)/
q

〈up〉2 + 〈vp〉2 for a given phase angle, v(φ) amounts to more than 30% of the

vector magnitude |u(φ)|. In Figure (b) we compare the average transverse and longitudinal
shear fields approximated by absolute values of the phase–resolved shear 〈|τby(φ)|〉 / 〈|τbx(φ)|〉
computed by adapting (8.92), whereas Figure (c) illustrates the same quantity evaluated by
averaging over the whole time-resolved data set using (8.92). Contrary, Figure (d) depicts
the appropriate values computed from the common approximative approach using the mean
velocity fields only.

8.4.5 Concluding remarks

The analytical integral 1D model for shallow wake flows derived in this chap-
ter consists of conservation equations for the standardized fluxes of volume
deficit Q∗

s, of momentum deficit M∗
s , and of tracer mass Q∗

c , Equations (8.65),
(8.67), and (8.70), respectively. Employing these conservation equations, the
downstream development of velocity usc and tracer mass cc along the center-
line, and of the wake half width δ is represented by Equations (8.71), (8.74),
and (8.73), respectively. In order to derive the above set of integral equations,
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extensive use has been made of the self-similar, and Gaussian transverse dis-
tributions of velocity deficit and mass concentration, given by Equations (8.1),
and (8.2).

The applicability of the integral model is restricted to the far field of shallow
wake flows, since

• self-similarity and Gaussian distribution do not hold in the near and inter-
mediate field,

• the order–of–magnitude arguments used in the derivation of the momen-
tum conservation equation from the 2D SWE are not valid in the near and
intermediate field,

• the entrainment of ambient fluid into the wake differs in the near, intermedi-
ate and far field. The constant entrainment rate presupposed for the model
is a suitable approximation only in the far field,

• in the bed friction model bottom shear stresses are included only as they
are induced by the mean–advective flow, bottom stresses induced by the
periodic–advective motion of the vortex street-like wake and of its associated
2D LCS have been neglected.
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Especially in the far field of shallow wake flows, where large-scale vortical struc-
tures are no longer present, time-averaged flow quantities allow for a complete
description of the wake flow—together with the statistical description of tur-
bulence presented in Chapter 7. In this chapter only those quantities are ex-
amined, which have already been used to develop an integral wake model in
Chapter 8. All data have been obtained from field-wise PIV and PCA mea-
surements of surface velocity fields and of depth–averaged mass concentrations.
Further analyses of these measurements concerning the quasi-periodic flow and
the large-scale coherent vortical structures will be presented in Part III of this
study.

The data obtained from various shallow wake flows will also be compared
to recent results of theoretical studies on unbounded and shallow wakes using
linear stability analysis.

9.1 Time-mean evaluation of planar measurements

9.1.1 Transverse distribution of velocity and mass

In the far field of shallow turbulent wake flows we expect the distributions of
the velocity deficit and the tracer mass to be self-similar, when standardized
by appropriate scales (cf. Section 8.1.1). Here, the transverse direction is non-
dimensionalized by the local wake half width, y+ = y/δ, and the ordinates by
their centerline values, u+

s = us/usc and c+ = c/cc. For an unbounded plane
wake it has been shown (see e.g. (Pope, 2000) for more detail) that solving the
x-momentum equation (cf. Section 8.2.1) the self-similarity of us (x, y)—which
has been employed to derive the momentum deficit equation—requires that
the deficit velocity follows a Gaussian distribution (8.1). This also implies the
turbulent–viscosity hypothesis using a constant value of the normalized eddy
viscosity ν+

t = νt/ (usc δ) (cf. Hinze (1975, pp. 489), Pope (2000, pp. 119,
147)). Hence, in 2D shear flows the transverse flux of turbulent x momentum
is approximated by

〈
u′v′

〉
= −ν̂t 〈usc〉 δ

∂ 〈us〉
∂y

.
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Analogously, the turbulent transverse mass flux in 2D shear flow becomes with
the gradient–diffusion hypothesis

〈
v′c′
〉

= −Dt
∂ 〈c〉
∂y

.

Using a constant dispersion ratio rγ in the Gaussian scalar distribution (8.2)

related to the turbulent Schmidt number by rγ ∝ Sc
−1/2
t (Pope, 2000, pp.161)

implies that we also assume a constant turbulent diffusivity Dt = νt/Sct
throughout a wake cross–section.

Transverse distributions of the velocity deficit us/usc and of the mass con-
centration c/cc in a shallow turbulent wake are presented in Figure 9.1 for a
vortex street-like wake flow of series 38_vs01. They represent the character-
istic behavior observed in shallow wake flows of stability classes VS and UB.
Cross–sectional distributions of experimental data (• symbols) obtained from
PIV and PCA measurements are compared to the analytical far field solutions
(8.1) and (8.2) indicated by bold full lines. Figures 9.1(a) and 9.1(b) show
distributions of u+

s and c+, respectively, for cross–sections at x/D = 1.75,
2.25, 3, 4 in the wake near field. The velocity deficit distribution u+

s reveals
a strong initial deviation not only from self-similarity, but—probably more
important—also from a Gaussian distribution. At the outer edges of the wake
u+
s takes negative values with the minima located at ±y+ ≈ 2.5 and approaches

the ambient velocity ua from negative values, i.e. lim
y+→±∞

us/usc = 0−. Hence,

in the immediate vicinity of the obstacle, the flow velocity takes lower values
relative to ua in the wake core, but along the edges of the wake becomes faster
than ua.1 Compared to the Gaussian far field distribution a second inflection
point occurs at the outer edge of the wake close to the cross–sectional minimum
of u+

s . Tachie & Balachandar (2001) reported similar transverse distribu-
tions of us in the shallow near wake generated by a flat plate placed normal to
the flow. LIF measurements of plate–generated wakes of varying shallowness
showed similar transverse concentration distributions (Balachandar et al.,
1999).

Figures 9.1(c) and 9.1(d) depict the transverse distributions of velocity
deficit and mass concentration, respectively, in the transitional and far field
at x/D = 5, 15, to 55. Both u+

s and c+ show self-similarity, and follow a
Gaussian distribution given by Equations (8.1) and (8.2). Near the wake bound-
aries at ±y+ ≈ 1.8 the wake flow quantities decrease faster than predicted by

1 Closer to the obstacle even the centerline velocity exceeds the ambient velocity, uc > ua.
Taking into account that from the PIV measurements we obtain surface velocity fields,
we may conclude that this accelerated flow can be addressed to 3D flow up-welling in the
lee of the cylindrical obstacle.
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(a) us/usc for x/D = 1.75, 2.25, 3, 4
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(b) c/cc for x/D = 1.75, 2.25, 3, 4
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(c) us/usc for x/D = 5, 15, to 55
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(d) c/cc for x/D = 5, 15, to 55

Figure 9.1. Transverse distributions of the velocity deficit us/usc and of the mass con-
centration c/cc in a shallow turbulent wake are presented for a vortex street-like wake flow
of series 38_vs01. Experimental data (• symbols), extracted at specific cross–sections from
PIV and PCA measurements, are compared to the analytical far field solutions (8.1) and
(8.2) indicated by a bold full line. Figures (a) and (b) show cross–sections at x/D = 1.75,
2.25, 3, 4 in the wake near field, revealing a strong initial deviation from self-similarity in
u+
s . In the transitional and far field at x/D = 5, 15, to 55 both u+

s and c+ follow a Gaussian
distribution that slightly over-predicts the data near the wake boundaries at y+ ≈ 1.8.
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(a) vortex street-like shallow wake
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(b) unsteady bubble shallow wake

Figure 9.2. Transverse distributions of the velocity deficit us/usc in the near field of shallow
wakes are presented for a vortex street-like wake flow of series 25_vs07 in Figure (a) and
for a unsteady bubble wake of series 17_ub25 in Figure (b). Experimental data (• symbols),
extracted at cross–sections x/D = 0.5, 1, 1.5, 2 from PIV measurements, are compared to
the analytic far field solutions (8.1) indicated by a bold full line. The initial deviation of u+

s

from self-similarity and Gaussian distribution occurs regardless of the wake stability class.

a Gaussian distribution.2 As has also been observed in other 2D shear flows
Pope (2000, pp. 105), the constant turbulent viscosity hypothesis—employed
for the deduction of the Gaussian distribution—will not hold near the bound-
aries of a shallow wake, but ν̂t will decrease to zero near the edges.

In the intermediate and far wake the transverse distributions of u+
s and c+

show the same characteristic properties, namely self-similarity and Gaussian
distribution, independently of the wake stability and of the presence of 2D
LCS. Also in the near field of a shallow wake the transverse distributions
behave similar regardless of the wake stability. This is illustrated in Figure 9.2
from the velocity deficit distributions of a VS wake (series 25_vs07) and of an
UB wake (series 17_ub25), plotted at cross–sections at x/D = 0.5, 1, 1.5, 2.
For both stability classes the profiles are neither self-similar nor Gaussian. As
also demonstrated in Figure 9.1(a), u+

s initially takes negative values at the
wake boundaries involving a second inflection point, and shows steeper flanks.

2 This deviation is quite obvious in c+, but also usually encountered in u+
s . In the PIV

measurements of series 38_vs01 a coarse spatial resolution with respect to the diameter
of the obstacle (∆y/D ≈ 0.3) leads to an inaccuracy in determining the centerline position.
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This shape form gradually changes into the self-similar Gaussian distribution
at more downstream positions.

9.1.2 Downstream development of velocity and mass

Shallow turbulent wake flows—vertically sheared due to the bottom, and hor-
izontally sheared due to an large-scale obstacle—like other shallow shear flows
display a characteristic duality of the macro length scales. Lengths can be nor-
malized by a transverse macro scale e.g. by the initial wake width or by the
diameter of the obstacle, or by a vertical macro scale related to the flow depth.
The standardized downstream distance then becomes x/D using a transverse
shear–scale, or cf x/h using a bottom friction–scale. The former is applicable
primarily in the near and intermediate wake fields, where stronger transverse
shear is present. The latter applies to the far field, where bottom friction–
induced shear prevails. In order to locate the transition between near and far
field for wake flows of different strength, an integral length scale can be intro-
duced based on the initial momentum deficit, which conceptually corresponds
to a jet/crossflow length scale comparing the strength of a jet to the ambient
flow (Jirka, 2004). This wake length scale will be defined as

`M =
M

1/2
s0

ua
. (9.1)

Assuming a Gaussian distribution of the velocity deficit in the initial
cross–section, Ms0 can be obtained from Equation (8.15). Locating the ini-
tial cross–section at the downstream stagnation point, where uc0 = 0, i.e.
usc0 = ua, and assuming δ0 = D/2, the initial momentum deficit can be ap-
proximated by M̃s0 =

√
π/2D/2hu2

a, and the wake length scale becomes

`M =
(√

π/8hD
)1/2

. If we assume an initial top–hat velocity profile, where

u = 0 inside the wake (initial width δ0 = D/2), then from M̃s0 = hD u2
a the

wake length scale becomes `M =
√
hD .

Since in this section we compare the downstream development of flow quan-
tities of various wake flows that differ with respect to their initial momentum
deficit, we normalize the downstream distance with the wake length scale as
x/

√
hD approximating the initial velocity distribution by a top–hat profile.

Note that the origin of the x axis remains in the center of the obstacle.
In Figure 9.3 the downstream development of the wake half width δu based

on the velocity deficit is compared to the wake half width δγ based on the mass
concentration for a vortex street-like wake flow (series 18_vs06). The half width
have been evaluated as the transverse distance from the centerline up to the
location of us/usc = 1/2, or c/cc = 1/2, respectively. The upper, logarithmic
plot shows the wake half width normalized by the radius of the obstacle, δu
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Figure 9.3. For a vor-
tex street-like wake (se-
ries 18_vs06) the wake half
width δ1/2 to the 1/2–
value has been calculated
from the fields of veloc-
ity deficit and of mass
concentration to obtain δu
and δγ . In the upper plot
the downstream spreading
of the wake is compared
in the near and interme-
diate field to the x1/2

growth of an unbounded
plane wake (dashed line).
The lower plot presents the
downstream development of
the turbulent diffusion ratio
rγ = δγ/δu.

and δγ are denoted by + and ◦ symbols, respectively. The spreading of an
unbounded plane wake follows a x1/2 dependency, which is indicated by a
dashed line up to `M = 20. We may expect also shallow wakes to show the
same dependency in the near and intermediate fields as long as the transverse
horizontal shear dominates the bottom friction. For the given shallow wake
flow the spreading of the wake displays such an increase, i.e. δu ∝ x1/2, in the
region of wake generation and 2D LCS development up to `M = O (10). Farther
downstream in the bottom friction dominated far field without predominating
2D LCS the growth rate obtains significantly lower values.

The spreading of a tracer mass introduced into the developing wake is il-
lustrated from the concentration–based wake half width δγ . Compared to the
velocity deficit based half width δγ is always larger, but qualitatively displays
the same downstream growth rates in the near and far wake fields. The width
ratio rγ = δγ/δu is presented in the semi-logarithmic lower plot of Figure 9.3.
For the given wake flow rγ takes values between 1.4 in the near field and 1.8
in the far field. This behavior has been observed also in other shallow wake
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(a) wake half width δu/δu0

Figure 9.4. The downstream development of flow quantities have been collocated for three
VS wakes (S = 0.01, 0.06, 0.07) and one UB wake (S = 0.25). Data obtained from the
measurement series 38_vs01, 18_vs06, 25_vs07, and 17_ub25 are denoted by �, ◦, ♦, and
. symbols, respectively. The data is plotted on a logarithmic scale over the downstream
distance normalized by the integral wake length scale `M , cf. (9.1). Figure (a) displays the

velocity deficit based–wake half width δu/ (D/2). A dashed line indicates a x1/2 power law
growth encountered in unbounded plane wakes.

flows of increased wake stability—with a stability parameter S & 0.05. How-
ever, for the case of a highly unstable VS wake (S = 0.01) rγ takes lower values
around 1.25, which have also been observed in an unbounded plane wake. Since
rγ = Sc

−1/2
t using the turbulent–viscosity and gradient–diffusion hypotheses,

the turbulent diffusivity is related to the eddy viscosity by Dt = νt r
2
γ , and

becomes 2 or 3 times the eddy viscosity in shallow wake flows.
In order to compare the time-mean flow fields of different shallow turbulent

wakes, four flow configurations with wake stability parameters S ranging from
0.01 to 0.25 have been selected. Series of PIV and PCA measurements have
been sequentially conducted with the overlapping fields of observation located
at different downstream positions. Thus, velocity and mass fields have been ob-
tained over a maximum of downstream distance. In Figures 9.4(a) to 9.4(c) flow
quantities evaluated from measurement series 38_vs01, 18_vs06, 25_vs07, and
17_ub25 are denoted by �, ◦, ♦, and . symbols, respectively. The last series
represents a UB wake with S = 0.25, the recirculation zone attached to the
obstacle ends at about x/D = 1.8. The stability class of the other three series
is VS with stability numbers of S = 0.01, 0.06, 0.07, respectively. To allow
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(b) centerline velocity deficit usc/ua
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Figure 9.4. (con’t) Figure (b) depicts the downstream evolution of the centerline velocity
deficit usc normalized by an initial value usc0 = ua at an initial cross–section at the down-
stream stagnation point. A dashed line indicates a x−1/2 power law decay of unbounded
plane wakes. Figure (c) displays the normalized centerline concentration cc/cc0.
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for comparison between the different wake flows, the downstream distance is
standardized by the integral wake length scale, x/`M , the flow quantities are
standardized by appropriate initial values.

Figure 9.4(a) shows the downstream development of the velocity deficit–
based wake half width normalized with the obstacle radius, δu/ (D/2), obtained
from the different wake flow configurations listed above. As also shown in the
previous Figure 9.3, the VS wakes roughly follow a x1/2 growth in the near
field, continued in a reduced growth in the intermediate and far field. For the
UB wake the half width initially decreases from 2δu/D = 1 at the obstacle to
about 0.65 at the end of the recirculation bubble, then increases in the near
field with roughly the same growth rate as observed from the VS wakes, finally
transits to a reduced growth farther downstream.

The centerline velocity deficit, displayed in Figure 9.4(b), is normalized
by an initial value usc0 = ua, as the initial cross–section is located at the
downstream stagnation point. The weaker VS wakes with S = 0.06 and 0.07
initially show a decay of the velocity deficit with usc/ua ∝ x−1/2 (indicated by
a dashed line) that also occurs in unbounded plane wakes. Beyond x/`M ≈ 20
a transition takes place toward an increased recovery of the velocity deficit.
The highly unstable VS case (S = 0.01) does not start from u+

sc = 1 at the
rear stagnation point, but from u+

sc < 0 as already discussed with Figure 9.1.
As a result, it increases in the near field, but after x/`M = 20 shows the same
deficit decay as observed from the other VS wakes. In contrast, the UB wake
takes values of u+

sc > 1 in the recirculation bubble, then decreases at a higher
rate than the VS wakes.

The longitudinal decay of the centerline mass concentration normalized by
its initial value in a cross–section close to the obstacle and shortly downstream
of the injection point is presented in Figure 9.4(c). For all wake flows we observe
a power law decay in the near field, followed by a transition to a strongly
reduced decay in the far field.3 In the case of the UB wake we observe a constant
concentration within the recirculation bubble—even slightly increasing toward
the end of the bubble, where the 2D LCS are shed off—, then c+c decays with
a reduced rate compared to the VS wakes.

The transitions from a near field behavior to an intermediate and far field
behavior can be grossly associated with a downstream distance of x/`M = 10
to 20, regardless of the flow quantity and of the stability of the wake flow. A
transitional distance of 10 `M corresponds to 7.8 D, 3.8 D, 3.2 D, and 1.8 D
for the four different wake flows of series 38_vs01, 18_vs06, 25_vs07, and
17_ub25 presented in Figure 9.4(a) to (c).

3 Due to a lack of quality and color resolution of the available PCA camera the effective
depth of the concentration measurements is 6 bit or 7 bit. The quantitative evaluation of
the very low concentrations in the far field is therefore regarded as less reliable.
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9.2 Linear stability analysis

9.2.1 Introduction to linear stability analysis

In the general case of a plane viscous shear flow, a small-amplitude (e.g. sinu-
soidal) perturbation in space and time is superimposed on the predominately
parallel base flow U = [U(y), 0, 0], the total flow field decomposed into base
flow plus the perturbation reads:

ũ = [U + u, v, w] and p̃ = P + p.

Both the base flow and the total flow satisfy the Navier-Stokes equations.
Subtracting the x-, y-, z-momentum, and continuity equation of the base flow
from the appropriate total equations leaves - after neglecting all terms nonlinear
in the perturbation variables and their derivatives - the perturbation equations.
Making use of Squire’s theorem4, only the 2D perturbation equations have
to be considered, which allows to define a streamfunction ψ(x, y, t) for the
perturbation field:

u =
∂ψ

∂y
and v = −∂ψ

∂x
.

We assume normal modes for the perturbation variables, i.e.

[u, v, ψ] = [û(y), v̂(y), φ(y)] ei(kx−ωt), (9.2)

where k is the wave number, c is the wave speed, the wave frequency is ω = kc.
û, v̂, and φ denote the amplitudes of the perturbation variables u, v, and ψ
depending on the transverse coordinate y. Then we must have

û = φy and v̂ = −ikφ.

From the Navier-Stokes equations, which according to Squire’s theorem we
can now simplify in a 2D depth-averaged way, we end up with a single forth-
order ordinary differential equation

(U − c)
(
φyy − k2φ

)
− Uyyφ =

1

i k Re

(
φyyyy − 2k2φyy + k4φ

)
, (9.3)

where the subscripts denote derivatives with respect to y. All variables have
been non-dimensionalized by a characteristic length scale L and a characteristic
velocity scale U0; time is scaled by L/U0, the molecular Reynolds number is
Re = U0L/ν. The boundary conditions at the walls are the no-slip conditions
for the flow perturbations

u = v = 0, which require φ = φy = 0. (9.4)

4 Squire showed in 1933, that in a plan flow to each unstable three-dimensional disturbance
there corresponds a more unstable two-dimensional one.
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Equation (9.3) is the well-known Orr-Sommerfeld equation, which governs
the stability of nearly parallel viscous flows. In general, the velocity perturba-
tions u occur in x, t, i.e. both in space and time. Therefore both the wavenum-
ber k = kr + i ki and the wave speed c = cr + i ci may be complex, where
the imaginary parts ki and ci denote a spatial and atemporal amplification
rate, respectively. If ki = 0, disturbances will only grow with time; if ci = 0,
their growth only occurs in space. Solutions of the eigenvalue problem of the
perturbation differential equation (9.3) for k and ω are difficult to obtain, and
in general require the use of numerical methods. Instead of solving (9.3) for
both complex k and ω, i.e. for the general case of a spatiotemporal pertur-
bation with both spatial and temporal amplification rates ki and ωi, we can
solve the eigenvalue problem for either k or ω being real. We then conduct a
temporal or spatial linear stability analysis, respectively. Since (9.3) is linear
with respect to ω, the temporal solution for k = kr is easier to obtain than the
spatial solution.

For a given base flow U(y), in (9.3) also Re is determined. Thus, (9.3) defines
the eigenvalue problem with φ as the eigenfunction and c(k) as the complex
eigenvalue depending on k. For simplicity, we choose k = kr, i.e. with ki = 0
we assume no spatial growth of the disturbance to occur, we thus apply the
temporal stability analysis. Now the real part cr represents the phase velocity
of the perturbation. For Re → ∞, i.e. for inviscid dynamics of the disturbed
flow5, the sign of the imaginary part ci characterizes the temporal stability
regime of the disturbance. For ci > 0 we have a growing instability, for ci < 0
the disturbance is damped.

So far, we briefly recalled the fundamental approach to analyze
the stability of a plane viscous shear flow. For a thorough discussion
on hydrodynamic stability the reader is referred to classic textbooks
like Betchov & Criminale Jr. (1967); Drazin & Reid (1981); Drazin
(2002), or Oertel Jr. & Delfs (1996).

In order to carry out linear stability analyses of shallow turbulent shear
flows, which are horizontally bounded by a solid bottom and a free surface,
Chu et al. (1983, 1991) implemented a bottom friction term in the inviscid
depth-averaged shallow-water equations (2D SWE). Chen & Jirka (1997,
1998) and Socolofsky et al. (2003) extended the analysis by including
also viscosity and combined the set of equations into a single modified Orr-
Sommerfeld equation. Substituting small-amplitude 2D normal mode pertur-
bations (9.2) into the equations of motion, after eliminating the pressure and
û the shallow-water perturbation equation becomes

(U − c) v̂yy −
[
(U − c) k2 + Uyy

]
v̂ = Dbf +Dtv (9.5)

5 For Re → ∞, the right-hand side of the Orr-Sommerfeld equation (9.3) tends toward zero,
the resulting inviscid perturbation equation is called the Rayleigh equation.
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with

Dbf =
cfU

ikh

(
−v̂yy −

Uy
U
v̂y +

k2

2
v̂

)
,

Dtv =
νt
ik

(
v̂yyyy − 2k2v̂yy + k4v̂

)
.

Equation (9.5) constitutes a modified form of the Orr-Sommerfeld equation
with the added effect of bottom friction. Whereas the left side of the above
equation remains unchanged compared to Equation (9.3), the viscous terms on
the right side take a different form. The viscosity termDtv utilizes the turbulent
viscosity νt to represent the stabilizing effect of small-scale turbulent fluctu-
ating motions, which dominate the molecular viscosity ν relevant in laminar
flows. The second term Dbf representing the damping effect due to bottom fric-
tion was added by Chu et al. (1983); it was implemented into the shallow wa-
ter perturbation equation by Chen & Jirka (1997), and is presented here in
a revised form (Socolofsky et al., 2003; van Prooijen & Uijttewaal,
2002).

In order to derive Equation (9.5) the rigid-lid assumption was applied, i.e. a
variation of the water depth h is expressed only in terms of pressure variation,
thus a perturbation of the base flow is not represented in a wave-like depth
perturbation. According to Ghidaoui & Kolyshkin (1999), for small local
Froude numbers Fr → 0 the rigid-lid assumption works well for all turbulent
Reynolds numbers Re =

√
gLL/νt.6

9.2.2 Stability regimes and flow classes

In the previous subsection, we discussed either the temporal or the spatial evo-
lution of small perturbations, regardless whether these disturbances are phys-
ically meaningful or impossible. In reality, such disturbances are introduced
into the flow at a certain time and in a finite area, then they develop both in
time and space. We will now consider spatially local perturbations, which are
temporally instantaneous. In this case, initially the unstable base flow receives
a perturbation impulse generating a wave-packet, which then develops in the
base flow. As the perturbation impulse can be concentrated locally at a point
or along a line, this will result in a 3D wave-packet or in a 2D wave-packet,
which contains the perturbation energy and covers a limited area. The wave-
packet generated by this spatially and temporally local disturbance (and so
the area of perturbation) now will either be advected downstream with the
main flow, while the area of its origin recovers its undisturbed state, or it will
influence the area of the initial perturbation permanently.

6 For instance, the result for Fr = 0.5 deviates by less than 1% from the result for Fr = 0
for Re ∈ [100; 1000]. (Ghidaoui & Kolyshkin, 1999, p. 877)
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When we investigate the spatiotemporal development of a small-amplitude
perturbation, introduced into an unstable7 plane shear flow at a time t = 0 over
a limited duration T and at a position x = 0 over a limited transverse extent, we
are interested in the temporally asymptotic behavior of such a perturbation.
We can identify two substantially different spatiotemporal scenarios for the
development of an induced perturbation wave-packet:

The amplified perturbation leaves the location of its origin irreversibly.
We call this behavior locally convectively unstable.

The amplified perturbation does not leave the location of its origin, but
grows continuously at this place. We call this behavior locally absolutely
unstable.

We can therefore discriminate regions of the unstable base flow, where a
local perturbation impulse leads to a permanent destabilization of the flow at
the the initial location, from those regions, where the flow re-stabilizes again.
We call them absolutely unstable regions and convectively unstable regions,
respectively. Figure 9.5 shows the principles of shear flow instability. The top
plot sketches the classical unstable flow of a free mixing layer behind a splitter
plate, where wave-packets travelling downstream indicate a locally convectively
unstable flow. Introducing a second obstacle in the shear flow (middle plot) may
lead to resonance, so that self-sustained oscillations can be obtained; but the
instability is still locally convective. The bottom sketch shows the transition
between two different regions of local instability for an unstable wake flow.
Figure 9.6 clarifies the definitions of local instability regions also in the (x, t)-
plane again for the case of a plane shear flow in the wake of a cylindrical
obstacle.

This distinction is essential for the active control of shear flows, because only
in absolutely unstable regions it is possible to effectively manipulate the flow
field. Only in these regions the flow field can be influenced globally, i.e. also in
the upstream direction. For more details on local spatiotemporal perturbations
the reader is referred to Huerre & Monkewitz (1985) and to Oertel Jr.
(1990), concerning mixing layers and wakes, respectively.

In shallow turbulent wake flows linear stability analysis aims to associate
the instability regimes to the wake flow classes VS (vortex street-like wake),
UB (unsteady bubble wake), and SB (steady bubble wake). If we would follow
a suggestion of Oertel Jr. & Delfs (1996) to call a perturbed flow, that
contains a locally absolutely unstable flow region, an absolutely unstable flow,
then we would have to classify every shallow wake flow to be absolutely un-

7 The instability of the base flow has to be ascertained from a previous temporal stability
analysis.
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Figure 9.5. Absolutely
and convectively unstable
regions in shear flows:
Chomaz et al. (1987)
(from Oertel Jr., 1990, p.
540) illustrated the princi-
ple of shear flow instability.
The classical plane shear
flow behind a splitter plate
(top plot) is locally convec-
tively unstable (CI), even if
an additional obstacle (mid-
dle plot) excites resonance
oscillations. In the wake
downstream of a blunt body
(bottom plot) a locally ab-
solutely unstable region
(AI) exists in the near field,
more downstream the wake
flow is locally convectively
unstable.

stable, because every unstable wake flow contains a region of local absolute
instability.

Contrarily, Chen & Jirka (1997) identified a critical return velocity in
the recirculation zone to separate absolutely and convectively unstable flow re-
gions. From the maximum return velocities observed in the different wake flow
cases, they concluded that UB wake flows with lower return velocity would be
convectively unstable, whereas VS wakes with sufficiently high return velocities
should be called absolutely unstable. Obviously, and with respect to the same
wave frequency fwake = 2π/T (i.e. the global wake frequency belonging to the
low frequent instability with cycle period T of the whole wake), both VS and
UB wakes are absolutely unstable, since both contain an absolutely unstable
flow region. Otherwise, starting with an initially steady flow around the ob-
stacle, an initial small-amplitude perturbation could not temporarily grow and
time-asymptotically create the pattern of a locally fixed low-frequency pertur-
bation of the wake. So, if we would like to use a single term to characterize
the stability of the whole wake, we should call both the VS and UB wakes to
be globally absolutely unstable, the SB wake to be globally convectively unsta-
ble, and for even higher S to find globally stable wakes. We want to stress, that
speaking of global instability, we refer to the whole wake instability with fwake.
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Figure 9.6. Absolutely and convectively unstable regions in wake flow: The definition
sketch after Oertel Jr. & Delfs (1996) shows regions of absolute and convective local
instability in the wake of a cylinder. The plan shear flow has to be classified as unstable from
a foregoing temporal instability analysis. In the lee of the obstacle the dotted area denotes
the absolutely unstable region, which is surrounded by the convectively unstable region. As
explained in the (x, t)- plane, an initial disturbance introduced in the absolutely unstable
region grows in time (i.e. temporal instability), and permanently influences this area. Point R
denotes the most downstream point, for which an initial disturbance still leads to the change
and permanent de-stabilization of the wake flow. In the convectively unstable region more
downstream, an initial perturbation is advected downstream, but does not spread upstream
or stay at its origin.

For higher wave number perturbations, i.e. f > fwake, also a globally stable
wake will be convectively unstable, since it essentially is a shallow shear flow
comparable to a mixing layer.

For the instability analysis of shallow turbulent wakes, Chen & Jirka
(1997) employed a far-field transverse distribution of the main flow compo-
nent to analyze also the near-field of the wake. Besides the non-linear effects
in the near-field especially induced by the periodic (i.e. coherent) flow, also
the time-mean U(y) distribution differs significantly in the near-field, since
it involves a second inflection point. We know that inflection points, where
∂2u/∂y2 = 0, are crucial for the stability of shear flows.

In this work we will focus on the local stability of shallow wake flows. We will
identify regions of local absolute and local convective instability, i.e. regions
that are sensitive to absolute or convective instability, for the different types
of shallow wakes. We will use the results of far-wake linear stability analyses
of Chen & Jirka (1997); Socolofsky et al. (2003), and, although there
remain some doubts about the applicability of this technique, we will extend
the results also to the near-wake.
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9.3 Local instability of shallow wake flows

9.3.1 Comparison of measurement and linear stability analysis

The modified Orr-Sommerfeld equation (9.5)—the governing equation of linear
stability analysis in shallow shear flow—is non-dimensionalized using the char-
acteristic local scales of length and velocity, L and U , based on the half width
δ (x) and on the centerline velocity deficit usc (x). Then on the right-hand side
of (9.5), the bottom friction term Dbf and the turbulent shear stress term Dtν

can be standardized using a local stability parameter Sf = cf L/h and a local
turbulent Reynolds number Re = UL/νt.

In order to compute the stability regimes in the far field of shallow turbulent
wakes, the flow field is described using a self-similar transverse distribution of
the velocity deficit, which is approximated by a classic hyperbolic-secant profile
(Chen & Jirka, 1997; Socolofsky et al., 2003),

U (y) = Ū
(
1 −Rw +Rw sech2

(y
l

))
. (9.6)

Here, Rw = (uc − ua) / (uc + ua) is an expression for the velocity deficit, i.e. for
the wake strength, Ū = 1/2 (uc + ua) is the cross–sectional averaged velocity,
l is a transverse length scale related to the width by 2δ1/e = sinh−1 (l) =
0.881 l. The hyperbolic-secant profile (9.6) is a special case of a more general
hyperbolic-sine wake profile (Monkewitz, 1988), where the ‘shape’ factor is
N = 1, whereas N > 1 leads to steeper profiles near the wake boundaries (cf.
Section 9.1.1).

The modified Orr-Sommerfeld equation for a self-similar shallow wake flow,
(9.5), constitutes an eigenvalue problem with the eigenfunction v̂ for the eigen-
values k, ω, Rw, Re, and Sf , where both k and ω are complex. Chen & Jirka
(1997) showed that shallow wake flows in the laboratory and in environmen-
tal flows take values Re = O

(
103 to 104

)
, and that the corresponding results

of stability analyses are independent of Re in this range. Thus, for stability
analyses of shallow wakes the turbulent shear stress term Dtν is neglected.

To numerically solve the perturbation equation, a pseudo-spectral colloca-
tion method employing Chebyshev polynomials mapped to an infinite domain
has been employed (Socolofsky et al., 2003); a finite Chebyshev polyno-
mial method has been employed by Chen & Jirka (1997). The search proce-
dure of Chen & Jirka (1997) allowed to identify the transitions among the
different local stability regions. Transition from absolutely unstable to convec-
tively unstable flow occurs for a saddle–point in the (kr, ki, ωr) domain, where
for a given Sf the saddle–point occurs for a critical value of Rw. Transition
from convectively unstable to stable flow occurs for vanishing ki, where for a
given Rw the critical value of Sf is the maximum value of Sf in the (kr, Sf )
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plane. Hence, using the critical transition values of Sf and Rw, the different
stability regions can be localized in the (Rw, Sf ) plane.

The downstream development of the wake half width δu (x) and of the
centerline velocity deficit usc (x) has been obtained from experimental data of
various shallow wake flows (Section 9.1.2). The observed δu (x) and usc (x) are
re-arranged in terms of

Sf = cf
2δ1/e

h
=

2n cf
h

δ , (9.7a)

Rw =
uc − ua
uc + ua

=
−usc

2ua − usc
, (9.7b)

where the width conversion factor is n =
√

ln 2 (cf. Table 8.1) for δ1/2 as
evaluated from the measurements.

As the stability parameter Sf of a shallow wake flow tends to zero, the
influence of bottom friction vanishes, and the flow can be regarded as an un-
bounded plane wake, also called a ‘deep’ wake. The standardized velocity deficit
Rw takes values related to specific flow situations, which can be distinguished
as follows:

Rw < −1 i.e. uc < 0 reversed flow (recirculation),
Rw = −1 i.e. uc = 0 stagnation point,
−1 < Rw < 0 i.e. 0 < uc < ua co-flowing wake,
Rw = 0 i.e. uc = ua uniform flow (wake vanished),
Rw > 0 i.e. uc > ua jet flow.

The maximum return velocity corresponding to Rw = −2.07 has been observed
to be constant in recirculation zones of UB wakes (S < 0.5); in steady bubble
wakes (S > 0.5) the minimum Rw increased (Chen & Jirka, 1997). Our
measurements of UB wakes with S = 0.25 yield minimum Rw values of -1.9 to
-1.8, which may indicate a tendency toward VS wakes at this global stability
number.

The downstream development of δu and usc is presented in terms of Sf
and Rw in Figures 9.7 for different wake flows (denoted by • symbols) start-
ing at x/D = 0.5 immediately behind the cylindrical obstacle. The laboratory
shallow wake flow configurations cover global stability parameters in the range
0.01 ≤ S ≤ 0.25, and represent the stability class of vortex street-like wakes
and its transition to unsteady bubble wakes. The local stability parameter Sf ,
Equation (9.7a), is in the range 0 < Sf < 0.4. Values of the standardized
velocity deficit Rw, Equation (9.7b), are in the range −1.9 ≤ Rw ≤ 0. The
transitions between locally absolutely unstable regions (AU), locally convec-
tively unstable regions (CU), and locally stable regions (S), resulting from
linear stability analysis (Socolofsky et al., 2003), are indicated by dashed
lines. The location of the first measurement cross–section downstream of a
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(b) VS wake, S = 0.01 (series 38_vs01)

Figure 9.7. The downstream development of the wake half width δ and of the centerline
velocity deficit usc, evaluated from PIV measurements of laboratory shallow wake flows,
are represented in the plane of a local wake strength parameter Rw = (uc − ua)/(uc + ua)
and of a local stability number Sf = cf 2δ/h, Equations (9.7a) and (9.7b), respectively. In
this plane also the local transitions between absolutely unstable regions (AU), convectively
unstable regions (CU), and stable regions (S) are indicated by dashed lines, as obtained by
Socolofsky et al. (2003) from a linear stability analysis.

transition into a different stability region is indicated by a � symbol, and the
corresponding x/D value is displayed (cf. Table 9.1).

Figures 9.7(a) to 9.7(c) show vortex street-like wake flows with a low
global stability number indicating the transition to ‘deep’ or unbounded plane
wakes. The measurement series are 80_vs01, 38_vs01, and 38_vs03 with
S = 0.01, 0.01, 0.03 given in plots (a), (b), and (c), respectively. As reported
in Section 9.1, the second wake shows a jet-like behavior immediately down-
stream of the cylinder even at the centerline. Data are given for x/D > 3 in this
case, closer to the obstacle the velocity deficit becomes Rw > 0. Figures 9.7(d)
and 9.7(e) show ideal shallow VS wakes (series 18_vs06 and 25_vs07_2) with
similar values of the wake stability parameter S = 0.06 and 0.07. The corre-
sponding values of the cylinder diameter–to–depth ratio D/h are 7 and 10.
Figure 9.7(f) shows an unsteady bubble wake (series 17_ub25) with S = 0.25,
thus near to the transition from the VS wake stability class.
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(c) VS wake, S = 0.03 (series 38_vs03)
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(d) VS wake, S = 0.06 (series 18_vs06)
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(e) VS wake, S = 0.07 (series 25_vs07_2)
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(f) UB wake, S = 0.25 (series 17_ub25_3)

Figure 9.7. (con’t)
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In VS wake flows large-scale vortices are shed off the cylinder perimeter
directly, and form a double–row of staggered counter-rotating eddies. Since no
recirculation zone exists, the centerline velocity uc becomes zero, and Rw = −1,
at the cylinder boundary only. The velocity deficit takes values of Rw ≥ −1
in VS wakes. The smallest value of the wake half width δ occurs at the loca-
tion of the vortex separation, i.e. at x/D ≤ 0.5, and monotonically increases
with downstream distance. Therefore, the minimum value of Sf is found at
the cylinder boundary (x/D = 0.5). Since the transition among the absolutely
unstable (AU) and convectively unstable (CU) regions occurs at critical val-
ues of Rw between -0.904 and -0.993 for Sf between 0 and 0.2, in VS wakes
the absolutely unstable region is small, and the transition to the convectively
unstable region occurs almost immediately behind the obstacle. The transition
between the convectively unstable and the stable region, however, occurs at
Rw → 0− for small Sf of deep VS wakes; in such flows the CU region lasts
almost until the wake completely vanishes.

In the VS wake flows a few values within the AU region can be observed
only in the case presented in Figure 9.7(e). On the one hand, surface PIV
measurements of the low S cases had a reduced spatial resolution relative
to the cylinder diameter, and the small AU region very close to the cylinder
probably was not resolved accurately. On the other hand, the hyperbolic–secant
transverse profile, Equation (9.6), does not approximate the observed near field
distribution of usc. A steeper and over-shooting profile with a second inflection
point at the wake boundary can lead to different critical Rw for the AU–CU
transition for given Sf .

For VS wakes close to deep or unbounded plane wakes the transition from lo-
cally convectively unstable to stable flow occurs at large downstream distances,
where the wake has almost disappeared. In the case presented in Figure 9.7(a)
the field of observation reached down to x/D = 35.5, still no CU–S transition
can be observed. For the same global stability number S = 0.01 in the wake of
Figure 9.7(b) this transition occurs at x/D = 33.9.

UB wakes form a short recirculation zone in the lee of the cylinder. The
cylinder boundary layers, unsteadily separating from both sides the cylinder,
do not roll-up immediately, but enclose the recirculation bubble, and merge
and roll-up at the downstream end of the bubble. From the bubble end al-
ternately shed counter-rotating 2D LCS advect downstream as in the case of
VS wakes. Negretti (2003b) presents details on the vortex growth in the
detached shear layers and on its merging and separation for shallow UB wakes.
Along the wake centerline two stagnation points (uc = 0, i.e. Rw = −1) are
encountered at both ends of the recirculation zone—at the cylinder boundary
at x/D = 0.5 as for VS wakes, but additionally at the downstream bubble end
where the vortex street is shed. Within the recirculation bubble the velocity
deficit takes values Rw < −1. Since the wake half width decreases along the
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bubble, and reaches its smallest value at the downstream bubble end, also the
local stability parameter Sf decreases until Rw = −1. The UB wake presented
in Figure 9.7(f) shows a decrease in Sf from 0.25 at the cylinder (i.e. the global
stability parameter S) to 0.16 at the bubble end. Since in the bubble of UB
wakes Rw values occur significantly smaller than -1, in the (Rw, Sf ) plane the
possible AU area is much larger than for VS wakes. Contrarily, the CU regime
is significantly smaller, because the CU–S transition occurs much earlier. For
instance for a critical Sf = 0.2 the transition is at Rw = −0.502, where the
wake deficit is still large (usc/ua = 0.668). The AU–CU transition in UB wakes
occurs slightly within the recirculation zone, for critical Sf between 0.2 and
0.4 the corresponding Rw are found between -0.993 and -1.141. The expression
‘unsteady bubble’ wake mirrors the fact that the predominant large-scale per-
turbations are advected downstream from within the time-mean recirculation
zone.

For even higher values of Sf the SB wake class is encountered, which does
not show any large-scale vortical structures at all. Though in this case the
AU regime ends at even smaller values of Rw compared to UB wakes, the
CU regime is vanishingly small. 2D LCS that may form at the end of the
recirculation zone, reach well into the locally stable region of the SB wake;
hence, they are stabilized before they shed off.

Table 9.1 lists the downstream distances where the transitions among differ-
ent local stability regions take place for the various wake flows. Distances are
standardized by the cylinder diameter and by the integral wake length scale,
x/D and x/`M . Note the decreasing downstream distance of the CU–S tran-
sition as the global stability parameter increases. The convectively unstable
region has a length of 1.6 D in the VS wake with S = 0.07, and a length of
only 0.2 D in the UB wake.

Table 9.1. Downstream distances for the local transition between absolutely unstable (AU)
and convectively unstable (CU) and stable (S) flow regions are obtained from experimental
data of different shallow turbulent wake flows presented in Figures 9.7(a) to 9.7(f).

series stability no. AU–CU transition CU–S transition

S x/D x/`M x/D x/`M

80_vs01 0.01 – – > 35.5 > 44.4

38_vs01 0.01 – – 33.9 43.6

38_vs03 0.03 – – 9.3 16.8

18_vs06 0.06 – – 3.0 7.9

25_vs07_2 0.07 0.9 2.7 2.5 8.0

17_ub25_3 0.25 2.0 10.7 2.2 11.9
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In conclusion, in shallow wakes the absolutely unstable and convectively
unstable regions are short, shallow wakes are predicted to stabilize a short
distance downstream of the obstacle. The transition to the stable flow region
roughly correlates with the transition between near and intermediate wake
fields for x/`M = O (10) (cf. Section 9.1.2). The extent of the locally stable
region—as obtained from a linear stability analysis of shallow wake flows—does
not appear to be closely related to the existence of 2D LCS. Large-scale vortical
structures resulting from the low-frequent perturbations, which are dominant
in the intermediate wake field, are found to be present in the stable wake region.
As demonstrated in Section 7.1.4, such large-scale coherent structures contain
a predominant amount of the TKE in wake flow, until they are dissipated
after 20 to 30 x/D. In Chapter 10 of this study we will show from structure
identification that 2D LCS are active in wake regions, where the flow is regarded
as locally stable with respect to low-frequent perturbations from linear stability
analysis.

9.3.2 Control of wake instability

The stability of wake flows can be controlled only by flow manipula-
tions in wake regions of local absolute or convective instability. For a gen-
eral discussion of flow control in shear flows the reader is referred to
Huerre & Monkewitz (1990); Fiedler (1998), to Oertel Jr. (1990) for
wakes, and to Delville et al. (1998) for the effect of large-scale vortical
structures.

In shallow wakes absolutely unstable flow regions are located directly at the
obstacle boundaries and downstream in the recirculation bubble attached to
the obstacle. Statically or passively controlling the absolute unstable wake
region is exercised by different methods. To suppress the vortex shedding
the ‘feedback information’ between both sides of the cylinder can be dis-
rupted e.g. by a splitter plate or by base bleeding or suction. Oertel Jr.
(1990) numerically analyzed stabilization of blunt body wakes by base bleed-
ing. Chen & Jirka (1997) employed porous obstacles introducing a base bleed
into the wake. For shallow UB wakes this base bleeding also results in weaken-
ing of the detached shear layers of the recirculation zone. Negretti (2003b)
enhanced the bottom roughness along the unsteady bubble lateral shear layers,
and thus also stabilized UB wakes. Also the surface roughness of the obsta-
cle can be manipulated. Also the well-known ‘Scruton Spiral’ found on many
industrial chimneys brakes up the coherence of the vortex shedding by intro-
ducing a 3D distortion to the plane vortices.

Dynamic control of the convectively unstable flow region is difficult in wake
flows being a modification of a predominant ambient base flow by vortical
structures that memorize the initial conditions of the wake generation. Dy-
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namic control can therefore be done by periodical perturbations of the base
flow (by distributed macro roughness elements) or by (vibrational or rotational)
perturbation of the wake generator. Since the convectively unstable region of
shallow wake flows is short, the possibilities for a shallow wake control through
manipulation of the ambient flow are restricted.

Also the interaction of different shallow wakes can lead to stabilization of
the individual wake flows. This has been demonstrated for shallow wake flows
by Heinrich (1999); v. Carmer et al. (2000) for two cylinders in different
arrangements. Rows of cylinders positioned normal to a shallow base flow have
been used to study shallow grid–generated turbulence (Uijttewaal & Jirka,
2003), and mass diffusion in enhanced turbulence of shallow base flows
(Rummel, 2002; Rummel et al., 2004). An early break down of large-scale
2D vortices in such multiply interacting wakes has been shown compared to a
single wake.
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Summary of Part II

Spectral description of turbulence. The turbulence field in shallow tur-
bulent wake flow can be regarded as isotropic ‘locally’ at the small-scale range
of random turbulent fluctuations. The concept of a universal equilibrium range
may apply, in which the spectral transfer and the dissipation of TKE are in-
dependent of distinct flow conditions, but solely depend on ‘inner’ variables,
namely on the viscosity ν and on the dissipation rate ε. In the inertial subrange
the transfer of TKE is unaffected by viscosity and follows the energy cascade of
Kolmogorov’s -5/3 power law toward higher wave numbers. In the large-scale
energy-containing range the production of TKE is non-universal, but depends
on the specific flow conditions (for instance, of a double-sheared shallow wake
flow) given by macro flow scales u0 and `0.

The spectral distribution of the fluctuation of a passive scalar component
displays a range of isotropic fluctuations at high wave numbers depending only
on the diffusivity Dm and the scalar dissipation rate εγ , corresponding to the
universal equilibrium range of the velocity field. In the inertial–convective sub-
range at moderate wave numbers also the scalar is spectrally transferred with-
out being molecularly diffused. The spectral density estimates of the scalar
variance, then, cascade to higher wave numbers as Sγ ∝ k

−5/3
w . For high

Schmidt–number flows, i.e. ν � Dm, there exist a range of wave numbers, at
which TKE is dissipated, but the scalar is still unaffected by diffusion. In this
dissipative–convective subrange the scalar fluctuations cascade toward higher
wave numbers following a -1 power law.

Large-scale fluctuations of the horizontal wake flow field with length scales
significantly larger than the water depth, ` > h, are likely to show characteris-
tics of 2D turbulence. The concept of the double cascade of forced 2D turbu-
lence may be applicable locally in the large-scale range. Energy introduced at a
wave number kw,i will be spectrally re-distributed toward higher wave numbers,
kw > kw,i, following the k−3

w enstrophy cascade, which also applies to freely
decaying turbulence. Complementary, TKE is also transferred toward lower
wave numbers, kw < kw,i, along the inverse energy cascade, S (kw) ∝ k

−5/3
w .

Scalar fluctuations introduced in the range of the enstrophy cascade will be
spectrally transferred through an inertial–convective subrange with Sγ ∝ k−1

w ,
and for high Schmidt numbers enter a viscous–convective subrange, for which
Sγ ∝ k−1

w still holds. Scalar fluctuations in the range kw < kw,i of the inverse
energy cascade will, nevertheless, follow a direct -5/3 cascade toward higher
wave numbers.

Characteristic scales of length and time are used to describe the turbulence
field. Macro scales reflect the specific flow conditions, for instance in a tur-
bulent uniform open-channel flow the macro scales of length and velocity can
be given as `0 = h and u0 = Ū . The large-scale 2D motion of the double-
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sheared flow is characterized by its own set of global macro scales of time T0

and length L0. Integral length and time scales, `I and τI , are commonly used
to characterize the range of energy–containing eddies. Despite they have no
physical equivalent, the Taylor scales of length and time, `λ and τλ, derived
from the correlation coefficients are often employed to describe the range of
small-scale fluctuations. The Kolmogorov micro scales of turbulence, `η and
τη, indicate the beginning of the dissipative subrange. Furthermore, the small-
scale scalar fluctuations are characterized by scalar Taylor scales, `λ,γ and τλ,γ ,
or—corresponding to the Kolmogorov scales—by the Batchelor scales of scalar
fluctuation, `η,γ and τη,γ .

Turbulence in shallow wake flow. Instead of employing a Reynolds de-
composition, velocity and mass concentration data of point-wise (and planar)
measurements in shallow wake flow can be triple-decomposed into large-scale
coherent and small-scale random flow fields. A phase–resolved averaging pro-
cedure based on the mean cycle period TP is superior to low-pass filtering
techniques in separating the coherent and random turbulence fields. An adap-
tive phase–resolved averaging based on individual cycle periods TP,i is well
suited also for more unstable wake flows showing a distinct variation in TP .

Based on the auto-correlation coefficients rii (τ) the global macro time scales
given by the mean cycle periods, T0 = TP , have been calculated as well as the
integral time scales τI . It has been shown that—though calculated from the
non-decomposed data—τI is a macro time scale only of the small-scale random
turbulence, whereas T0 represents the large-scale coherent motion. Using the
appropriate scale relations, the Taylor, Kolmogorov, and Batchelor time scales
have been computed.

From the triple-decomposed data the large-scale coherent and the small-
scale random parts of kinetic energy and mass concentration as well as of the
mass fluxes have been obtained. The large-scale coherent motion is of crucial
importance in the transfer of momentum and mass. In the first instance, and
especially when interested in averaged quantities, the coherent and random
fluctuations can be regarded as completely de-correlated. Anisotropy of the
turbulence field is due to the large-scale fluctuations only, in the high wave
number range isotropic turbulence applies.

The structural duality of double-sheared shallow turbulent wake flows can
be described as a dual spectral structure of 2D turbulence at the large scales
and 3D isotropic turbulence at the small scales. In the low wave number ranges
of the PSD estimates the transfer of kinetic energy follows a -3 enstrophy cas-
cade toward higher kw, though a significant amount of TKE seems to be dissi-
pated directly due to bottom friction instead of being transferred through the
spectral ranges. Also, the complementary inverse energy cascade of 2D turbu-
lence is absent in shallow bottom friction–exposed wake flows. Corresponding
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to the enstrophy cascade, the mass variance is spectrally transferred toward
higher kw with a -1 power law, thereby being unaffected by influences of bot-
tom friction. On the small scales the spectral structure can be described by
the concepts of locally isotropic turbulence. Energy and mass are transferred
through the inertial–convective subrange following the Kolmogorov and Batch-
elor -5/3 power laws, cascading further down to the dissipative and diffusive
scales inaccessible to the present LDV-LIF measurements.

Analytical wake flow model. The analytical integral 1D model for shallow
wake flows consists of conservation equations for the standardized fluxes of
volume deficit Q∗

s, of momentum deficit M∗
s , and of tracer mass Q∗

c , Equa-
tions (8.65), (8.67), and (8.70), respectively. Employing these conservation
equations, the downstream development of velocity 〈usc〉 and tracer mass 〈cc〉
along the centerline, and of the wake half width δ is represented by Equa-
tions (8.71), (8.74), and (8.73), respectively. In order to derive the above set of
integral equations, extensive use has been made of the self-similar, Gaussian
transverse distributions of velocity deficit and mass concentration, given by
Equations (8.1), and (8.2).

In contrast to unbounded plane wakes, where the momentum deficit is con-
served, in shallow wakes the bottom shear–induced dissipation of TKE leads
to a decrease of the initial momentum deficit. Moreover, the existence of a
periodic–advective part of the flow with predominant large-scale vortical mo-
tion results in different rates of mixing and entrainment and of frictional losses.
The proposed integral wake model is applicable only in the far field of shallow
wake flows, since the assumptions of self-similar Gaussian transverse distri-
butions of 〈us〉 and 〈c〉, and of a constant entrainment coefficient α do not
hold in the near and intermediate fields. Furthermore, the order–of–magnitude
arguments used to deduce the momentum conservation equation from the 2D
SWE as well as the model to incorporate the bottom shear stresses are valid
in the far field only.

Time-mean fields and local stability regions of shallow wake flows.

The time-mean description of shallow turbulent wake flows have been obtained
in terms of the downstream development of the centerline velocity deficit u∗sc,
of the centerline mass concentration c∗c , and of the wake half widths δu and
δγ , as well as of the transverse distributions of the velocity deficit u+

s , and of
the mass concentration c+. A transition from the wake near field, where in the
first instance the laws of unbounded plane wakes apply, to intermediate and far
wake regions, where the rates of growth and decay diminish with downstream
distance, occurs after x/`M ≈ 10 to 20.

Experimental data of wake flow measurements have been related to results
of linear stability analysis. The local stability regions of shallow wake flows, as
predicted by linear stability analysis, have been identified. In shallow wakes the
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absolutely unstable and convectively unstable regions are short, shallow wakes
are predicted to be stabilized a short distance downstream of the obstacle.
The transition to the stable flow region at x/`M = O (10) roughly correlates
with the transition between near and intermediate fields of shallow wakes.
The extent of the locally stable region—as obtained from a linear stability
analysis of shallow wake flows—does not appear to be closely related to the
existence of 2D LCS. Large-scale vortical structures resulting from the low-
frequent perturbations, which are dominant in the intermediate wake field, are
found to be present in the stable wake region.
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10. Large-Scale Coherent Vortical Structures in

Shallow Wakes

One of the most interesting phenomena in almost all turbulent shear flows is
the existence of organized vortical motions embedded in a turbulent base flow
of rather disordered and weak vorticity. Such phenomena are often referred
to as coherent structures and usually associated with regions of concentrated
vorticity. Since these coherent structures greatly influence the transport of mo-
mentum and scalar quantities (e.g. mass or heat), the entrainment of ambient
fluid, and the mixing and advection in the mean flow, they are of great interest
in engineering applications, for instance effective mixing of industrial discharges
in the environment, drag reduction, combustion processes, vibration and res-
onance in structural design, or noise reduction in acoustics. Understanding of
the mechanisms of the generation and decay of coherent structures is the basis
for their prediction and even their control and, thus, can help solving practical
engineering problems.

An essential feature of shallow wake flows behind cylindrical obstacles is the
formation of vortical structures, whose horizontal extend is many times larger
than the water depth h, but scales with the initial half-width of the wake δ0
and, thus, with the radius of the obstacle D/2. Arranged in a shallow wake
similar to a von Kármán vortex street, counterrotating large-scale coherent
structures (LCS) shed alternately from both sides of the obstacle or from the
attached recirculation zone. As long as they exist, LCS have a great impact
on the transfer of momentum and mass within the wake flow. The knowledge
of the conditions for the generation of these LCS as well as of their fate while
they advect downstream, is crucial for the processes in the transitional region
of the shallow wake.

In this chapter firstly the methodology will be presented, how large-scale
coherent vortical structures are detected in wake flow fields, as observed in
laboratory experiments. Secondly, LCS in shallow wakes will be characterized
by identifying and quantifying their main properties.
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10.1 Identification of large coherent structures

As the importance of coherent vortical motions in turbulent shear flows is now
widely recognized both in fundamental and applied research, there exists a huge
and rapidly growing body of literature concerning their identification and char-
acterization. This literature will not be discussed in detail here, but references
will be restricted to those papers, which have had an immediate impact on the
present study on large coherent structures in shallow wake flows. For a review
of the recent significant literature, the reader is referred to Bonnet et al.
(1998) and the references given herein. Holmes et al. (1996) is mainly de-
voted to this topic, but many of the recent textbooks also discuss coherent
structures to a limited extent.

10.1.1 Definition of coherent structures

Although their is still no general agreement on a single definition of coher-
ent structures, a working definition has to be stated before discussing their
identification. A definition, which is often referred to, was given by Hussain
(1986):

“A coherent structure is a connected [, large-scale] turbulent fluid mass
with a instantaneously phase-correlated vorticity over its spatial ex-
tend.”

Hussain (1986, p. 307), Hussain (1983, p. 2818)

This definition contains all the essential information for the identification
of LCS at least in the case of shallow turbulent wakes. The flow quantity,
which constitutes the basis for the eduction of LCS, is the vorticity ω. Ob-
viously, from kinematic grounds, vortical motions, whose typical length scale
greatly exceed the flow depth, can be treated as a 2D flow. Thus, in order to
extract large-scale coherent structures in shallow flow, it is sufficient to observe
the horizontal vortical motions, i.e. the vertical component ωz of the vorticity
vector. Though our intuition is to connect coherent flow structures to their
vorticity, since we understand them as vortical motions, we could also try to
use other measures. An example, which sometimes led to misinterpretation in
flow visualization, is to relate the structure identification to a scalar quantity
like a dye concentration. Here it was presumed, that the regions of high tracer
concentration should be identical to regions of high connected vorticity signif-
icant for LCS. This was exemplified by Holmes et al. (1996, pp. 40) using
the interesting far wake visualizations of Cimbala et al. (1988). From shal-
low wake flows it is quite obvious, that even though in the near field a LCS has
been marked with tracer dye, in the far field a blob of high tracer concentration
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is still advected downstream, while the underlying coherent vortical structure
has already dissipated its kinetic energy and disintegrated.1

From the above definition the flow field can be decomposed into coherent
vortical structures and an incoherent base flow, which is characterized by small-
scale 3D random turbulent velocity fluctuations. To discriminate the coherent
part of the flow from the incoherent background, an appropriate phase–resolved
averaging procedure can be employed to evaluate the average history or life of
coherent vortical structures from a series of individual large-scale eddies. This
averaged rotational fluid motion will be called the large coherent structure. So,
the requirement of phase correlation for LCS implies that they show connected
vorticity not only in space, but also in the phase–resolved temporal domain.

Finally, the size of the LCS has to be addressed. In turbulent shear flow
it is well known that coherent flow structures of various sizes co-exist (e.g.
’ribs’, ’hairpins’, ’typical eddies’ of Taylor length-scale).2 In contrast, by large
coherent structures those structures will be understood that have a length scale,
which is of the order of the transverse shear flow. How do large-scale coherent
vortical structures interact with the small-scale incoherent turbulence of the
surrounding ambient (or time-mean) flow? The answer to this question, crucial
for all turbulent shear flows, also contributes to the solution for many aspects
of momentum and mass transfer in shallow turbulent flow.

There is much discussion, whether such a definition is sufficient for the
detection of LCS in different flow configurations or not, but there might be
consensus that at least it is necessary. For example, Jeong & Hussain (1995)
examine the general applicability of different definitions in order to develop a
common criterion for the eduction of LCS.

10.1.2 Eduction scheme for LCS in shallow wake flow

To elucidate the role of coherent structures in diverse flow configurations, var-
ious methodologies to identify and extract LCS have been developed since the
1970s. The proposed techniques always reflect the flow data to be analyzed,
which in turn was (and still is) strongly depending on the available measure-
ment techniques. Obviously, there is a great difference between the data records
obtained from a single hot-wire anemometer and the information buried in the
raw data of a 3D PIV or combined PIV/PLIF system. So, progress in measure-
ment techniques, and today also in computer power and numerical methods,
1 See Figure 10.7 for a comparison of ωcore and ccore depending on x/D. In the wake far

field for x/D > 30 the LCS have disintegrated and their vorticity vanished, but mass still
prevails in the former LCS. Due to the vertical dispersion resulting from the bottom–
induced shear, this discrepancy is far less obvious in shallow wake flows compared to
unbounded plane wakes.

2 Since viscous dissipation occurs below the Kolmogorov length-scale `η, no fluctuations
with higher frequency exist. Thus, in the spectral range of order O(lK) all fluctuations
finally tend to be coherent. (cf. also Chapter 6)
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allows for and sometimes also needs development of more sophisticated meth-
ods to analyze and extract the essential data. It is beyond the scope of this
work to review the recent developments and the currently available structure
identification schemes. The reader is referred to Bonnet et al. (1998) for an
overview and an extended recent bibliography. Following Camussi (2002), we
briefly categorize the methods frequently used nowadays to educe LCS from
2D velocity fields:

• Galileian or Reynolds decomposition: one of the most used methods for co-
herent structure identification from 2D velocity fields consists in translating
the velocity vector field by an amount equal to the structure advection veloc-
ity. When the translation velocity is evaluated locally, the method is usually
denoted as a Galileian transformation. Similarly, a Reynolds decomposition
is applied when the translation is based on the global mean advection ve-
locity. Vortical structures are identified in the transformed vector fields or
streamlines.

• Direct analysis of the vorticity vector field : because of the vortical motion of
the flow field in the vicinity of coherent structures, it is straight forward to
identify the LCS by regions of concentrated vorticity. Since the vorticity is
solely associated with spatial derivatives, which are available from 2D veloc-
ity fields, the vorticity fields allows for the same temporal resolution as the
velocity data. Besides the enhancement of small-scale turbulence and noise
by applying a finite difference algorithm to the unsmoothed data, also regions
of high local shear cannot be separated from actual vortical structures.

• Analysis of the velocity gradient tensor evaluated locally : Refined definitions
for coherent vortical structures are based on properties of the velocity gra-
dient tensor ∇u, e.g. a positive second invariant, or complex eigenvalues of
∇u. For a detailed discussion see e.g. Jeong & Hussain (1995).

• Large eddy simulations filtering : Analogous to the numerical large eddy sim-
ulations (LES) the velocity vector data is low-pass filtered here to suppress
the high-frequency small-scale fluctuations. This is contrary to the above
eduction schemes, which imply a high-pass filtering with a low (Reynolds
decomposition) or higher cut-off frequency (vorticity, or velocity gradient).

Further structure identification methods employ for instance proper orthogo-
nal decomposition (POD), linear stochastic estimation (LSE), or maybe most
promising wavelet analysis.

Prerequisites. For the reasonable choice of a methodology to educe LCS in
shallow wake flows, whether an existing method has to be employed or to be
improved, or a new one has to be developed, the individual prepositions have
to be clarified, which are twofold at least: technical measurement conditions,
and physical flow conditions. On the one hand, denoted as technical measure-
ment conditions, the kind, quality and quantity of the data provided by the



10.1 Identification of large coherent structures 285

employed measurement techniques request and restrict the eduction scheme.
In the framework of this research study, both point-wise and planar measure-
ments of 2D velocity vectors and tracer concentrations were conducted. For
the identification of LCS we will use the horizontal velocity fields obtained
from a 2D Particle Image Velocimetry (PIV) system, which is adapted to the
observation of LCS in shallow flows. The temporal and spatial resolution of the
data is optimized to record a series of individual large-scale eddies interacting
with each other and with the vertical shear flow. Because of the restricted res-
olution both in time and space, however, fluctuations are resolved only down
to intermediate scales, so effectively the employed PIV technique works as a
low-pass filter with an intermediate cut-off frequency.

On the other hand, the physical flow conditions of a shallow wake flow in-
duced by a cylindrical obstacle differ from other turbulent shear flows. Depend-
ing on the class of wake instability, we will encounter LCS organized in a vortex
street-like formation generated at or near the obstacle (called ‘topographical
forcing’), or more or less monopolar eddies in the shallow mixing layers of the
initially stable wake flow (i.e. ‘internal transverse shear instability’). The latter
ones are not covered by the present LCS identification methodology3. Topo-
graphically forced flow instabilities reveal a much better spatial and temporal
predictability than those internally induce by transverse shear. Their ‘place of
birth’ is fixed, since they are generated by separation near the obstacle, as well
as their ‘date of birth’, since the shedding cycle shows a distinct periodicity
for a strong forcing. Because of these initial conditions and the axisymmetric
mean flow, also the travelling paths of the large-scale eddies do not vary much.

In conclusion, for the structure identification a methodology will be em-
ployed, which makes use of the local evaluation of horizontal velocity gradients,
to benefit most from the 2D PIV data. Since these methods suffer from noise
arising from the finite differences algorithm approximating the velocity gradi-
ents, we will employ some preprocessing to smooth the discrete data. Since the
LCS are related to their “phase-correlated vorticity”, a phase–resolved averag-

3 Because of the smaller transverse main velocity gradients compared to topographical forc-
ing at an obstacle, shallow mixing layers bear a weaker forcing mechanism for LCS. In
order to provide this forcing, one has to control the ambient flow to prevent separation
near the cylindrical obstacle, but nevertheless produce and maintain enough shear for the
growth of LCS in the mixing layers of the wake. This task might be impossible, unless
other geometrical shapes of obstacles like a porous plate are used. Since for this kind
of instability an equilibrium shear flow is needed, which provides sufficient length for
the development of large-scale structures, other facilities might be better suited than the
Karlsruhe shallow water facility. Contrarily to our eduction scheme, to extract large-scale
coherent structures from mixing layer flows we first have to identify individual eddies,
which are then phase–aligned averaged to educe their underlying coherent structure. The
general feasibility of structure identification in such shallow turbulent shear flow was
demonstrated by Dietz (2001), who conducted and evaluated experiments on large-scale
structures in a shallow mixing layer introduced by the confluence of two streams initially
separated by a splitter plate.
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ing procedure has to be applied to the detected individual realizations of the
large-scale eddies. Here, we will take advantage of the physical flow conditions,
namely the high spatial predictability of the occurrence of vortical structures.
Instead of applying the structure identification directly on the time history of
the flow field, at first a phase averaging procedure will be employed on the
data in order to filter them. Afterwards the coherent vortical structures will be
educed directly instead of individual eddy structures, which still would have
to be phase-correlated.

A quick overview of the exact procedures is given in v. Carmer et al.
(2001, 2002), in the remainder of this section we will discuss our method in
more detail.

Phase–resolved averaging procedure. The purpose of the phase–resolved
averaging procedure is to educe the coherent flow4 from a sequence of instanta-
neous flow fields. Therefore, the data has to be post-processed to provide sets
of phase–resolved ave-raged vector (and scalar) fields. The general procedure of
phase–resolved averaging makes use of the evident periodicity of the wake flow
and implies the following steps. At first, the individual periods for each shed-
ding cycle are determined for the velocity fields as well as for the concentration
fields using an auto-correlation approach. Next, based on the individual cycle
periods, the time histories of the vector and scalar fields are re-organized by
assigning each field of a time series to its appropriate phase angle φ. The cycle
period is split into a number of phase intervals, and all fields belonging to a cer-
tain phase interval are then averaged, which leads to phase–resolved averaged
fields for discretized phase angles φi. Using phase–resolved averaged instead
of ensemble–averaged data, means to adopt a triple decomposition into mean,
periodic and random parts, instead of a classical Reynolds decomposition into
mean and fluctuating parts. So, effectively the phase–resolved averaging pro-
cedure works like a narrow adaptive low-frequency bandpass–filter, which is
adjusted to the individual frequency of each shedding cycle.

Structure identification. In order to separate large eddy structures from
the surrounding small-scale turbulence, use is made of the Weiss function Q
(Weiss, 1981, 1991), which was first applied by McWilliams (1984) to educe
vortical structures in numerically simulated quasi-2D geostrophic turbulence.
This method is based on the comparison of the magnitudes of rate–of–strain
and vorticity, what makes it a very comprehensive criterion, which satisfies the
definition of a LCS. The Weiss function is given as

Q ≡
(
∂u

∂x
− ∂v

∂y

)2

+

(
∂v

∂x
+
∂u

∂y

)2

−
(
∂v

∂x
− ∂u

∂y

)2

(10.1)

4 In optics coherency of light terms light of the same frequency and phase. In the case of a
shallow vortex street-like wake in turbulent bottom shear flow we address the repetitive,
quasi-periodic low-frequent part of the flow as the coherent flow.
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= θ2
1 + θ2

2 − ω2
z ,

which is the difference between a squared combination of the normal
strain rates in θ1, the squared doubled shear strain terms (2 sxy)

2 =
1/4 (∂u/∂y + ∂v/∂x)2 in θ2

2, and the squared vertical vorticity ω2
z . For the

situation of a shallow turbulent wake flow the horizontal linear strain rate
terms in θ1 are small compared to the shear strain term θ2, and therefore not
of significance for the identification of vortical structures.5 If θ1 is discarded
from Q, then the remainder would be proportional to the second invariant of

the tensor ∇u defined as II∇u ≡ 1
2

(
u2
i,i − ui,j uj,i

)
= −1

2ui,j uj,i. Therefore,

also the approximation

Q ≈ −2 II∇u =
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)2

−
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∂x
− ∂u

∂y

)2

=
∂u

∂y
· ∂v
∂x

(10.2)

could be employed. Hence, it can be noted that regions of negative Q could
be approximated by regions of a positive second invariant II∇u, which is the
main criterion for structure identification introduced by Hunt et al. (1988),
cited and fundamentally improved by Jeong & Hussain (1995).

However, in the present study on shallow wake flow the original definition
of Q given in (10.1) is employed. From the horizontal velocity fields obtained
from the PIV system, the planar distributions of Q are computed. For the
identification of large eddy structures use is made of the physical explanation
of Q(x, y). Flow regions, which are dominated by vorticity, i.e. |ω| > |θ1|+ |θ2|,
are associated with negative values of Q.6 On the contrary, regions where
Q > 0 are dominated by (especially shear) strain. It can easily be shown that
Q must vanish in the area integral in axisymmetric shear flows as is a shallow
turbulent wake. Due to small-scale turbulence and noise, and amplified by the
finite differences scheme, small irregular pattern of low negative and positive
Q values occur in every turbulent flow.

Large-scale vortical structures concentrate a high amount of vorticity in
their cores, and can therefore be characterized by their significantly higher
magnitude of negative Q. Thus, depending on small-scale turbulence intensity,
noise, and data post-processing, a fixed absolute Q value can be established as
a static threshold, Qeddy = const, to separate large-scale vortices. On the other
hand a threshold can be defined dynamically with respect to a local reference
value, e.g. Qeddy/Qref = const = e−1. The latter kind of definition is already
employed to compute the half-width δu of the wake from the time-averaged flow

5 The shear strain term θ2
2 and the vorticity term ω2 are of the same order of magnitude,

whereas the term containing the normal components of the rate-of-strain θ2
1 was evaluated

to be less than 10 % of θ2
2 on average.

6 For vanishing or equal normal strain components, θ1 → 0, and |ω| > |θ| is exactly equiv-
alent to Q < 0.
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field, this definition allows to use δu as a length scale in the integral model in
order to establish self-similarity of the transverse velocity distribution.

For the eduction of vortices being spatially connected 2D structures in the
time-dependent flow field, a time-dependent reference value has to be employed
instead of using a time-averaged one. In consequence regarding the space-
domain, the time-dependent reference value is localized at a fixed point in
the time-dependent flow field, instead of a reference line in the time-mean
flow. In order to implement a dynamic threshold criterion for the identification
of vortices, for each value Q(x, t) depending on time and space one has to
associate a reference value, which is the local maximum of negative Q occurring
in the core of each vortical structure. Computing the length scale of a vortex in
this dynamical way allows for self-similarly normalize the vortex properties in
a Lagrangian frame. The most benefit from this dynamic threshold definition
can be obtained in those regions of the flow, where (i) self-similarity really
holds for the vortices, and (ii) the dynamic threshold really applies.

The motivation for preposition (i) is, that without assuming self-similarity
one cannot conclude from the spatial extent and strength of a vortex to its mag-
nitude of further properties integrated over the vortex area (e.g. total kinetic
energy). Without a self-similar distribution the same peak values and widths
would not result in identical area–integrated properties of eddy structures.
Thus, in the region of vortex generation and growth, it might be misleading
to apply a dynamic threshold, since one still could not predict the contents of
further properties for the whole vortex area. Preposition (ii) results from the
fact, that due to 3D turbulence, measurement and numerical noises, we always
have to apply a certain absolute threshold, below which no unambiguous at-
tribution to the vortex is possible. How far downstream of the obstacle the
dynamic threshold will drop below the static threshold and thus will become
inappropriate, will depend on the flow conditions characterized by the stabil-
ity number S = cf D/h, and on the noise level. Any doubt has to be avoided
about which criterion was applied at each spatiotemporal position in the wake
flow, as well as any mixing of criteria, otherwise the final disappearance of the
vortex cannot be observed. Therefore, the application of a dynamic threshold
is restricted to the wake region where the established vortices are in an early
stage of decay, it prevents the observation of the vortex generation as well as
the final disintegration.

In conclusion, a singular large-scale eddy will be identified by its Q value
falling below a specific absolute threshold in a connected region. The detected
area covered by such a large vortical structure will depend on the chosen thresh-
old value of Qeddy. Besides the measurement and data processing techniques,
the necessary threshold level reflects the scale difference between large quasi-
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2D structures and the small-scale 3D turbulence.7 A proper choice of the Q
threshold guarantees for a correct evaluation of the vortex area over the whole
wake flow field.

Finally, it should be mentioned again that regarding the structure identi-
fication scheme there is no difference, whether we apply the scheme on time–
resolved data or first run a phase–resolved averaging procedure and then apply
the scheme to the phase–resolved re-sampled data. In the former case individual
vortices are identified which have to be phase–aligned to extract the underlying
coherent vortical structure. In the latter case using the coherent flow field the
LCS are educed directly. So far, the methodology to identify LCS in shallow
wake flows has been introduced by more general reasoning, but without justi-
fying the procedures. This will be demonstrated in the following section, where
the eduction techniques is applied to a set of experimental data from a vor-
tex street-like shallow wake flow. The topography of the large-scale coherent
wake flow, and the decomposition of various flow properties into coherent and
incoherent parts provide strong support for our schemes being appropriate to
educe LCS in shallow wake flow.

10.2 Characteristic flow properties of large coherent structures

10.2.1 Topography of large coherent structures

Since our eduction method for LCS in shallow wake flow involves a phase–
resolved averaging procedure in a fixed (Eulerian) frame without making use
of the Taylor hypothesis, we obtain topographical information on LCS not only
in the phase-domain, but also in space. In other words, we are able to observe
both the local variations of LCS during the phase cycle, and the spatial changes
of the LCS while they advect downstream, thus we obtain both local and
advective rates of change for the LCS.8 Resolving also the advective derivatives
is a crucial precondition for the understanding of all kinds of shallow flows,
which are continuously influenced by bottom friction over their spatial extent.

Shedding cycle of LCS in fixed frame. We start the discussion on the
topography of LCS in the shallow wake of a cylindrical obstacle by presenting
phase–resolved averaged horizontal velocity fields {u} and distributions of Q
values, which were computed from {u}. As an example, we use the data of a
vortex street-like wake flow (series 18_vs06, run 1, cf. Table 5.2) with D/h =
7, where the ratio of the horizontal and vertical length scales of the shear

7 When using the phase–resolved averaged flow field to extract LCS instead of single vor-
tices, the threshold value QLCS can be reduced significantly, because the high-frequency
fluctuations of the shear flow do not contribute to the periodic flow field.

8 As mentioned above, this results from the appropriately selected combination of technical
measurement conditions and physical flow conditions.
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Figure 10.1. Phase-resolved averaged flow fields for a vortex street-like shallow wake (series
18_vs06, run 1, cf. Table 5.2) are displayed for 4 different discrete phase angles φi showing
the generation of LCS in the right shear layer of the wake. The horizontal velocity vectors
are reduced by the mean undisturbed (ambient) flow field, thus the deviation of the flow
field induced by the cylindrical obstacle is depicted. Contours show phase-averaged values
of the Weiss function Q defined by (10.1). Full lines show negative Q related to vorticity-
dominated flow regions, the bold full line indicates the threshold level of small negative
Q used to distinguish LCS from the surrounding water body and from background noise.
Dotted lines show strain-dominated regions of positive Q values.
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flow is a geometrical measure for the shallowness of the flow. So, this flow is
characterized by a high shallowness, and we therefore expect the kinematic
and dynamic effects of the vertical shear flow to significantly influence the
development of the LCS.

In Figure 10.1 we use a geophysical coordinate system having its origin
in the center of the cylindrical obstacle (filled in black), where distances are
normalized by a macro length scale of the transverse shear flow, namely the
cylinder diameter D. The phase-time in this case is discretized into 32 phase
angles φi. Since the phase-time is repetitive per definitionem, the first time
segment following a full cycle is identically equal to the first time segment, or
in general φi = ti

T 2π ≡ T+ti
T 2π = φi+n with i = 1 . . . n. The 4 phase angles

depicted in Figure 10.1 are φi = 16
16π,

21
16π,

26
16π, and 32

16π spanning half the
shedding cycle in 3 approximately equal increments. Here we can follow the
generation of LCS in the right wake shear layer, i.e. we observe the average
shedding process of individual large eddies into the right-hand side of the
wake flow. Displayed in the plots of this figure are the phase-averages of the
horizontal surface velocity fields, which for better perceptibility are reduced by
the mean undisturbed flow field ua (i.e. without obstacle). Also, though we
only displayed a quarter of the calculated velocity vectors, we used the full
velocity data set for the deduction of further flow quantities. Here, this is the
Q value computed from (10.1) comparing the strength of strain and vorticity,
which enables us to identify vorticity dominated flow regions. Dash-dotted
line contours indicate positive Q values and strain-dominated regions, whereas
full lines indicate negative values of Q, which is related to areas dominated by
vortical motion. The bold full line shows the negative Q contour closest to zero,
indicating the static threshold level QLCS , which separates the vorticity of the
3D small-scale turbulence from the higher vorticity magnitudes contained in
the large-scale vortical structures. Here, the threshold level is given as QLCS =
−0.025 s−2, or non-dimenisonalized by ambient flow variables as QLCS h2/u2

a =
4.2 10−4.9 Contour levels are distributed linearly with a step size of ∆QLCS =
0.075 s−2 or ∆QLCS h2/u2

a = 12.7 10−4, where on the one hand linear levels
were chosen to allow the reader also to recognize the gradients of Q, but on
the other hand the high variability of the Q values demanded also higher step
sizes.

The evaluations presented in Figure 10.1 exemplify, what a shallow turbu-
lent wake flow can look like, and what the importance of large-scale vortices
may be. Large patches associated with connected negative Q values are alter-
nately aligned in the wake of the obstacle. Their length scale is of the order
of magnitude of the transverse shear layers, which in turn is roughly O(D).

9 The vertical enstrophy from the instantaneous surface velocity fields of the ambient flow
was computed as ωz ·ωz ≈ 0.006 for the present measurement run. This value corresponds
to about 25% of the magnitude of the given QLCS .
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Figure 10.2. Phase-resolved averaged flow fields of a vortex street-like shallow wake (series
38_vs01, runs 1 and 2, cf. Table 5.2) illustrate the downstream development of the wake
flow carrying LCS. The shallowness is only D/h = 1.7, the wake is less shallow. The phase-
angles φ of the plots for the different runs are selected as to present a continuous coherent
flow field. The threshold level is given as QLCS = −0.015 s−2, or non-dimenisonalized as
QLCS h2/u2

a = 8.0 10−4. Contour levels are distributed linearly with a step size of ∆QLCS =
0.05 s−2 or ∆QLCS h2/u2

a = 26.8 10−4. Refer to Figure 10.1 for further detail.

From the vector representations it becomes clear that the connected vorticity–
dominated regions exhibit a strong rotational motion, as expected. We can
easily see the counter-rotating staggered arrangement, which resembles a von
Kármán vortex street. Also the centers of rotation coincide remarkably well
with the local minima of negative Q, when we use a Lagrangian frame mov-
ing with the ambient velocity. This question will be addressed in more detail
in the following. We can surely state that the applied eduction scheme iden-
tifies connected regions of phase–correlated vorticity, which we associate with
large-scale coherent vortical structures. These LCS are embedded in an area
with large lumps of positive Q, where the phase–averaged flow is dominated by
straining motions mainly due to shear. In the immediate vicinity of the obsta-
cle this strain–dominated region really surrounds the LCS, more downstream
we find that also those regions show connected patterns, which are arranged
anti-symmetrically with the LCS along the wake centerline A less shallow case
(series 38_vs01, runs 1 and 2, cf. Table 5.2) is presented in Figure 10.2. The
area in toto covered either by significant vortical or straining motion can there-
fore be regarded as the wake flow induced by transverse shear at the obstacle.
Outside the wake region in the ambient flow, where solely the bottom–induced
vertical shear is acting, neither negative Q below the negative threshold value
nor positive Q above the positive threshold can be found. There exist no strong
horizontal structures neither in the coherent flow field nor in the time–resolved
fields.

Because the reduced velocity vector field may lead to misinterpretation at
first sight, we want to mention that vectors pointing upstream indicate that



294 10. Large-Scale Coherent Vortical Structures in Shallow Wakes

the flow is slower than the ambient flow. But of course this does not mean per
se that the flow direction reverses in the wake. In fact, in this flow configuration
only a very short zone of flow recirculation can be found (cf. also Figure 9.4(b)).
The less shallow VS wake flow presented in Figure 10.2 does not develop a
recirculation zone at all. On the other hand, since the flow is forced around
the obstacle and also around the large-scale vortices, due to the displacement
it is accelerated to velocities even higher than the ambient flow. The regions of
accelerated flow in the immediate vicinity of the obstacle have been addressed
in Sections 9.1.1 and 9.1.2.

The generation of LCS is captured very well in the full series of phase–
resolved Q fields, which cannot be presented here in their entirety due to the
limited space. Around ± 75◦ from the upstream stagnation point we observe
two regions of very high vorticity, which might be identified as the nuclei of
the LCS. Due to feedback they show an alternate behavior, e.g. while the
right-hand region moves to the back some degrees, the left-side region moves
forward. While the vortical region is moving towards the lee side it is firstly
stretched and secondly continuously fed by more vorticity. This soon gives
rise to a second maximum located also close to the cylinder perimeter, but
downstream of the first one. Figure 10.1 shows the beginning of this process
for the left shear layer side in plot 2 for φ21. For φ26 and φ32 the stretching
of the attached vortical region and growth of the second maximum can be
recognized. The end of this tearing process is depicted in φ16 for the right
shear layer, now this second maximum becomes separated from the obstacle
due a shear–dominated flow intrusion along the leeward cylinder boundary. As
can be seen for the right side at φ26, the second maximum is now moving into
the detached shear layer, but remains connected to its nucleus. Finally at φ32,
the second maximum completely separates from the first one, and can now be
understood as a single LCS. In this stage it contains an extremely high amount
of negative Q, which as a result of the tearing process is found to be located in
an elliptical shape with its major axis inclined by 45◦ against the centerline.

As a LCS advects downstream, it gradually reshapes toward a circular
geometry. Its core remains located in the former position of the outward focus
of the elliptical shape. The steep gradients clearly indicate the circular circum-
ference. A braid of lower vorticity is directed from its downstream end toward
the upstream end of its adjoining LCS travelling ahead.10 This braid, which can

10 Only LCS of opposite sign, which therefore cannot merge, are involved in this kind of
interaction. Since no exchange of large-scale vorticity is involved in this process, we will
not call it a partial pairing of different LCS (cf. also Hussain, 1986, p. 311), but a
tearing or straining process of an individual LCS. Nevertheless, as a concept we could
look at a monopolar vortex, which has to be surrounded by a ring of opposite vorticity
in order to balance the vorticity of the core, and assume that this vorticity should be
organized in smaller eddies. For instance Lugt (1979, p. 187, p. 360) reported laboratory
visualizations by Weske of steady secondary vortices in the boundary layer of a primary
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be observed clearly in flow visualizations (cf. Figure 11.1 or Figure 11.2(b)),
influences the transverse mass exchange across the wake and the entrainment
and mixing of fresh fluid. We will discuss this aspect during the next chapter.
While downstream of the cylinder the LCS acquire their circular shape, also
the organization of the strain–dominated regions of positive Q becomes more
pronounced. As can be seen more clearly in Figure 10.2, centers of strain (i.e.
maxima of positive Q) are anti-symmetrically located opposite of the vortex
cores. They effectively separate LCS of the same sign (i.e. the same sense of
rotation) and prevent them from merging.11 At least in this sense the strain–
dominated regions also sustain the LCS, but in the following we will add more
to the importance of these regions in shallow wake flows.

We now have a first impression of large-scale coherent vortices existing in
shallow wake flows. In the next paragraphs we will gain more insight into the
topography of LCS by examining their streakline and streamline pattern, and
into their decay as they advect downstream over a bottom of given roughness.

Streaklines of the coherent flow field. From the phase–resolved averaged
surface flow fields also streaklines can be computed to further elucidate the
large scale periodic motion in the wake flow. In anticipation of Section 11.2.2 a
numerical particle tracking procedure is applied that allows to observe virtual
kinematic floats continuously released into the coherent quasi-periodic velocity
fields extracted from PIV measurements. The turbulent diffusive transport of
the small-scale random part of the wake flow, which is induced by the small-
scale Reynolds shear {ur vr}, is only poorly resolved by the employed PIV
system. These random turbulent fluctuations are excluded by the filtering effect
of the phase–resolved averaging procedure, as is the influence due to variations
of the individual large eddies with respect to the LCS. In Figure 10.3 we
show streaklines in a vortex street-like shallow wake (series 18_vs06, run 1)
emerging from two point-sources located at both sides of the cylindrical body
(x/D = 0 and y/D = ±0.5). The LCS are indicated by bold contour lines
of a threshold value QLCS superimposed on the vector field of the periodic
horizontal flow {u}−ua. Also from the streaklines we can observe clearly the
intrusion of ambient fluid across the whole wake and its final entrainment at
the downstream ends of the LCS, where the strained braids connecting the

vortex. As a second monopolar of opposite sign would approach the first one, we could
think of an interaction, that would include the transfer of ring vorticity from the first
monopolar to the core of the adjoining second vortex. In the end this would lead to
an vortex street like arrangement rather than a bipolar vortex. But concluding, we do
not have any experimental evidence of such an vorticity exchange, and whether or not
we would be able to observe the appropriate small scales, there is some indication from
streamline fields that such interactions are not possible.

11 Whether these strain-dominated regions prevent the LCS even from interaction, or on
the contrary they result from interaction of the LCS, is an open question. The generation
not only of LCS, but also of strain regions has to be examined as well as their sustaining
interaction.
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Figure 10.3. Coherent streaklines are computed from the phase–resolved averaged flow
fields of a vortex street-like shallow wake flow (series 18_vs06, run 1). Here, numerical
tracers are continuously released into the left and right cylinder boundary layers, the sources
are located at x/D = 0 and y/D = ±0.5. Additionally, bold contour lines show the LCS
indicated by their threshold value QLCS . Vectors depict the horizontal velocity field reduced
by the undisturbed (ambient) flow field. The phase interval of the lower plot follows the
upper one with a phase difference of π/2.
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LCS are rolled-up into the coherent eddies. We can observe that a streakline
is usually rotated around the outer side of the LCS, when the origin of the
streakline is located in the same shear layer as the LCS, whereas it is strained
along the inner side of the LCS, when its origin is in the opposite shear layer.

Since the streaklines can be regarded as continuous releases of small tracer
floats from point–sources, they can also provide an estimate for the mass trans-
port solely by the LCS dominated low-frequency wake flow. Since the floats are
released at a constant rate, we even have an impression of the concentrations
of the tracer mass. For example we notice a significant agglomeration of floats,
where the braids are connected to the LCS. We will address these aspects again
in Section 11.2 in more detail.

Coherent streamlines for different moving observers. From the phase–
aligned averaged surface flow fields we can also compute streamlines, i.e. curves
that are parallel to the velocity vectors everywhere in the flow. We use a
common definition of a streamfuction ψ,

u ≡ ∂ψ

∂y
and v ≡ − ∂ψ

∂x
, (10.3)

based on the assumption that the vertical component of the flow w = 0, and
therefore, continuity satisfies ∂u/∂x+ ∂v/∂y = 0. Contrary to velocity gradi-
ents and its derived quantities like vorticity or a scalar quantity, streamlines
are not Galilean invariant, but they vary in different moving frames. Display-
ing streamlines in a fixed Eulerian frame is useful in the immediate vicinity
of the obstacle inducing a shallow wake in the flow region, which is associated
with an absolute flow instability. In case of predominantly convectively unsta-
ble flow—as observed in a vortex street-like shallow wake—we get more insight
from an analysis in a Lagrangian frame.

In an introductory video to the Karlsruhe shallow flow facility (cf.
v. Carmer & Deutsch, 2001, 2002) we present a camera flight following
a tracer dye–tagged large-scale eddy with its advection speed. This gives a
good impression both of the fate of the structure and of an observation in a
Lagrangian frame.

Perry et al. (1982) used some of the classical movies by L. Prandtl
to extract streamlines in a two-dimensional bluff body flow in order to exam-
ine the vortex-shedding process. They realized that in the far wake it is not
of much help to use a fixed frame of observation, and therefore they added
calculations of a von Kármán vortex street in unbounded ambient flow to
support the Eulerian visualization. Following von Kármán’s model the eddies
were approximated by irrotational potential vortices, in the first instance the
streamlines from this calculation can be regarded as an idealization also for a
vortex street-like shallow turbulent wake. In Figure 10.4 we reproduce the far
wake streamlines shown by Perry et al. (1982) in a Lagragian frame moving
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(a) Lagrangian frame moving with Ua (b) Lagrangian frame moving with ULCS

Figure 10.4. Streamlines obtained from far wake calculations using a classical von Kármán
vortex street model were shown by Perry et al. (1982) in a Lagragian frame moving with
the ambient flow velocity Ua (on the left) and with the advection speed ULCS of the eddies
(on the right). A bold line indicates a dividing streamline or ‘separatrix’. Contrary to a
vortex street-like shallow turbulent wake flow, the eddies were treated as irrotational point
vortices in an unbounded ambient flow. (from Perry et al., 1982)

with the ambient flow velocity Ua (on the left) and with the advection speed
ULCS of the eddies (on the right). A bold line indicates a dividing streamline
or ‘separatrix’. The touching separatrices of adjacent vortices (they actually do
not cross) indicate a saddle point in the velocity vector field. If we vary the lon-
gitudinal traversing speed of the observational frame, the saddle-points move
laterally; moving the frame with the ambient velocity (on the left), the saddle-
points tend toward infinity. On the contrary, the centers of closed streamlines,
which coincide with the cores of the eddies, do not vary their lateral position,
because being irrotational vortices they have infinite velocity and velocity gra-
dients at their centers regardless of the finite traversing velocity of the frame.
Employing a different model approximation for the vortices, like an Oseen
or Rankine vortex, resulted in improved predictions of a von Kármán vortex
street (cf. e.g. the review of Chen (1973) for further references).

In Figure 10.5 streamlines computed from the phase–resolved averaged ve-
locity fields (series 18_vs06, run 1) are shown for different traversing speed
of the frame of observation. Observing this vortex street-like shallow wake
flow in a fixed Eulerian frame (cf. Figure 10.5(a)), no closed streamlines at-
tached to the cylinder can be found, i.e. no recirculation zone related to an
absolutely unstable flow region exists (or only a very small zone that could
not be resolved). Concluding that this wake flow is dominated by convective
instability associated with the LCS, the frame of observation is advected with
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the large-scale vortices. In the next two plots of Figure 10.5 we display the
streamline pattern with respect to a frame moving with the mean ambient ve-
locity Ua (Figure 10.5(b)), and moving with the mean advection speed ULCS
of the LCS12 (Figure 10.5(c)). Bold lines indicate threshold values QLCS to
educe the coherent structures. Both streamline figures are comparable to the
schematized plots in Figure 10.4 from Perry et al. (1982). When moving
with Ua, the velocity gradients tend toward zero outside of the wake, thus the
streamlines become indifferent and sensitive to small deviations from Ua out-
side of the wake.13 Contrary to Figure 10.4, in Figure 10.5 the centers of closed
streamlines are not fixed in frame space, but also shift laterally for different
frame traversing speed. This results from the velocity distribution in the cores
of the shallow vortical structures, which is not like an irrotational vortex, but
closer to a solid-body rotation (cf. also Figure 10.7). Furthermore, the shape
of the closed cavity (following a ‘separatrix’ not displayed here) is slightly
tilted toward the centerline. This can clearly be seen in Figure 10.5(c) moving
with ULCS , where the associated centers and saddle-points are not located at
the same downstream position, but the saddle-points are located a little more
downstream. So, compared to the idealized computation, we have a loss of
symmetry in the shallow wake, which might be attributed to the presence of
the cylinder.

Comparing the streamline pattern with the Q value distribution, local min-
imum Q values of the vorticity–dominated regions coincide with the centers of
the closed streamlines, when moving with ULCS . The saddle-points are char-
acterized by high positive Q values and are located amid the shear-dominated
regions for an observer moving with the eddies. We can also compare the co-
herent streamlines to the streaklines in the coherent flow field, as e.g. for a
Eulerian frame of observation represented in Figure 10.5(a) and in the top plot
of Figure 10.3, respectively. Unlike the hypothesis of Perry et al. (1982),
the streaklines emerging from the cylinder boundary do not coincide with the
dividing (or any other) streamlines, regardless which traversing speed for the
moving frame we choose. Since we reduce the velocity vectors by a given lon-
gitudinal velocity like Ua or ULCS instead of really applying a moving frame
of observation, we do not obtain a steady flow field, but still retain a periodic
field.14

12 For the streamlines in Figure 10.5(c) the traversing speed of the Lagrangian frame has been
chosen to 0.88ULCS/Ua, which was found to be appropriate for a downstream position of
about x/D = 8. The general dependence of the core velocity ULCS on x/D is displayed
in Figure 10.7 in terms of the standardized slip velocity (Ua − ULCS) /Ua.

13 We expect Perry et al. (1982) having encountered the same problem resulting from
numerical noise instead of geometric imperfections and measurement noise of the PIV
system. No streamlines are computed further away from the wake in the undisturbed
ambient flow.

14 The generation and fate of the large-scale vortical structures as they advect downstream,
makes it difficult to obtain steady solutions when following a single structure. We would
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(a) Streamlines in fixed frame

Figure 10.5. Streamlines were computed from the phase–resolved averaged velocity fields
for a vortex street-like shallow turbulent wake flow (series 18_vs06, run 1) for different tra-
versing speed values of the Lagrangian frame. The thin lined streamline pattern is displayed
together with the bold iso-lines of threshold value QLCS indicating the LCS. The streamlines
are computed in a Eulerian frame in plot (a), and for a frame moving downstream with the
traversing speed equal to the mean ambient velocity Ua and equal to the mean advection
speed ULCS = 0.88Ua of the large-scale vortices in plots (b) and (c), respectively.

10.2.2 Transient behavior of large coherent structures

In the case of vortex street-like shallow wakes, large-scale coherent vortical
structures are an essential part of the low-frequency periodic flow field, and
thus they also influence the time-mean flow field. We already showed various
flow properties of time-averaged wake flow fields in Chapter 9. Decomposed
into coherent and random part, distributions of flow properties over the whole
wake field will be addressed later in this section. In the following subsection
we will focus on the LCS themselves, and briefly discuss their gross features
and its variation as the LCS advect downstream suffering from bottom-induced
shear.

have to normalize the fields by characteristic scales depending on the downstream position
(e.g. the velocity field u(x, y) by the core velocity defect us,core(x)). Because in shallow
wakes two controlling mechanisms act simultaneously, namely the local lateral shear due
to the obstacle and the continuous vertical shear due to bottom friction, two characteristic
velocities would be of relevance: us,core(x) and the friction velocity u∗(x, y). Within the
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(b) Frame moving downstream with mean ambient velocity Ua
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(c) Frame moving downstream with mean advection speed ULCS of LCS

Figure 10.5. Continued, for caption see facing page.



302 10. Large-Scale Coherent Vortical Structures in Shallow Wakes

We educe LCS from the periodic wake flow field by means of the Q value
given by (10.1). The center or core of the LCS is characterized by a local maxi-
mum of the negative Q value. The horizontal extent of a single LCS can either
be evaluated statically by a constant threshold value QLCS or dynamically us-
ing a threshold relative to the local minimum, e.g. QLCS/min(Q) = e−1, as
discussed in Section 10.1.2. Throughout this work we prefer the prior definition
to discriminate the LCS from numerical noise also far downstream from the
obstacle, where Q tends toward zero.

Figure 10.6 shows a single LCS in the right shear layer of a vortex street-like
shallow wake (series 18_vs06) at different downstream positions x/D = 7, 15,
23, 31. Based on the Q distribution, a bold + marks the core position of the
LCS, and a bold full line indicates the boundary of the LCS based on a static
threshold value QLCS . The low-frequency surface velocity field up is reduced by
the velocity at the core position, which we call the structure’s advection speed
uLCS. Thus, the reduced velocity vectors centered around the single vortex
are essentially the same as observed within a Lagrangian frame moving with
uLCS. The vector field is underlaid in gray scale with the vertical vorticity ωp,z
calculated from the low-frequency quasi-periodic surface velocity fields. Light
and dark areas indicate high positive and negative vorticity, respectively. Note
that velocity and vorticity are given in dimensional form here, and that the
vorticity scale changes with downstream position, whereas the velocity scale is
retained.

Figure 10.6(a) shows a single LCS at x/D = 7 in its mature stage and
beginning to decay again. The shape is roughly circular and symmetric with
respect to the LCS core. Since uLCS varies with the downstream position
(cf. the relative vortex slip velocity (ua − uLCS) /ua in Figure 10.7(b)), the
Lagrangian frame of observation accelerates with uLCS/ua → 1. Therefore,
the reduced flow velocity (u− uLCS) changes in each plot as does the core
advection speed. Comparing the flow velocities of the rotational motion of
the vortex displayed at different positions in the consecutive plots gives an
impression how the strength of the vortex varies as it advects downstream. As
illustrated in Figures 10.6(b) and 10.6(c), with increasing downstream distance
the vortex looses its symmetry, it becomes skewed toward the outside of the
wake and shows a more erratic shape. At x/D = 31 in Figure 10.6(d) the LCS
has disintegrated, though we still find its core from the local minimum of Q.
But its strength is not sufficient anymore to unambiguously identify the whole
structure by its Q value. Also the area of significant vorticity has lost its spatial
connection. ωp,z shows a patchy distribution of low values resulting from the
velocities, which indicate only a weak circulation.

far wake the dependency of both forces is analyzed analytically (cf. Chapter 8), but an
important part of the wake shows a transient behavior, which reveals a complex interaction
of both mechanisms.



10.2 Characteristic flow properties of large coherent structures 303

6
6

.2
6

.4
6

.6
6

.8
7

7
.2

7
.4

7
.6

7
.8

−
2

.2−
2

−
1

.8

−
1

.6

−
1

.4

−
1

.2−
1

−
0

.8

−
0

.6

−
0

.4

−
0

.2

+

x
/D

 [
−

]

y/D [−]

0
.5

 u
/u

a

{ ωz
 }   [1/s]

−
0

.6

−
0

.4

−
0

.2

00
.2

0
.4

0
.6

(a) x/D = 7

1
4

.2
1

4
.4

1
4

.6
1

4
.8

1
5

1
5

.2
1

5
.4

1
5

.6
1

5
.8

1
6

−
2

.8

−
2

.6

−
2

.4

−
2

.2−
2

−
1

.8

−
1

.6

−
1

.4

−
1

.2−
1

+

x
/D

 [
−

]

y/D [−]

0
.5

 u
/u

a

{ ωz
 }   [1/s]

−
0

.3

−
0

.2

−
0

.1

00
.1

0
.2

0
.3

(b) x/D = 15

2
2

2
2

.5
2

3
2

3
.5

2
4

−
3

−
2

.8

−
2

.6

−
2

.4

−
2

.2−
2

−
1

.8

−
1

.6

−
1

.4

−
1

.2

+

x
/D

 [
−

]

y/D [−]

0
.5

 u
/u

a

{ ωz
 }   [1/s]

−
0

.2
5

−
0

.2

−
0

.1
5

−
0

.1

−
0

.0
5

00
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

(c) x/D = 23

3
0

3
0

.5
3

1
3

1
.5

3
2

−
3

−
2

.8

−
2

.6

−
2

.4

−
2

.2−
2

−
1

.8

−
1

.6

−
1

.4

−
1

.2

+

x
/D

 [
−

]

y/D [−]

0
.5

 u
/u

a

{ ωz
 }   [1/s]

−
0

.1

−
0

.0
5

00
.0

5

0
.1

(d) x/D = 31

Figure 10.6. A moving observer follows a single LCS in the right shear layer of a vortex
street-like shallow wake (series 18_vs06). The core positions in the four plots from upper
left to lower right are x/D = 7, 15, 23, 31. A + marks the position of a local minimum of
the Q value being the center of the LCS. A bold full line shows the boundary of the LCS
as calculated with a constant absolute threshold QLCS . Vectors indicate the flow velocity
relative to the velocity in the core called the LCS’ advection speed uLCS . Light and dark
areas show large positive and negative magnitudes of the coherent vertical vorticity ωp,z, a
medium gray indicates ωp,z = 0.
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(d) Vorticity profiles within LCS

Figure 10.7. The transient behavior of LCS advecting downstream is illustrated by eval-
uations of the coherent wake flow fields. (a) The position of the LCS core δcore in both
wake boundary layers (i.e. phase–resolved averaged pathline indicated by •) is compared to
the time-mean growth of the wake (full lines show location of wake half width δu, where
〈us(x, δu)〉 / 〈us(x, 0)〉 = 1/2). (b) The development of the deficit of the core velocity
(ua − uLCS)/ua is marked with •. The vertical vorticity ωp,z, indicated by a full line, is also
decreasing rapidly. (c) For different downstream positions the relative velocity (up)/ua is
plotted transversely over the relative distance from the LCS core r/δcore. (d) Analogously
the transverse distribution of the vorticity ωp,z(r/δcore) is shown for x/D = 7, 15, 23, 31.

The local minima of Q indicate the centers of vorticity–dominated flow
regions. The transient behavior of the LCS with downstream distance can be
characterized by its core magnitude of Q, which in turn is strongly dominated
by ωp,z near the core. In the sequence of plots in Figure 10.6 (cf. also Figure 10.7
(b)) we can observe the decrease of the vorticity values both in the core of
the LCS and over its whole area, whereas the values outside the LCS remain
roughly constant and close to zero.

The plots of Figure 10.7 shed more light on the longitudinally transient
characteristic of large-scale coherent structures in a shallow turbulent wake
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(series 18_vs06). The positions y/D = δcore of the vortex cores within the
coherent wake flow field up (marked with ◦ symbols) are shown for both wake
shear layers in Figure 10.7(a). The distance δcore of the core from the wake cen-
terline is an additional measure for the width of the wake. The LCS trajectory
follows the development of the wake half width δu defined by the time-mean de-
fect velocity as 〈us(x, δu)〉 / 〈us,c(x)〉 = 1/2. Beyond x/D ≈ 12 the longitudinal
change diminishes both in the mean wake width and in the lateral LCS core po-
sition for this wake flow configuration. Note that the minor asymmetry occurs
in the core positions of both shear layers. This results from the velocity field not
being uniform—neither in the longitudinal nor in the lateral direction—due the
imperfect topography of the horizontal bottom, and amplified by very shallow
flow conditions in this series. Figure 10.7(b) visualizes the longitudinal devel-
opment of velocity defect of the LCS advection speed us (δcore) = (ua− uLCS)
normalized with the ambient velocity of the undisturbed flow ua (indicated by
a bold full line, and plotted with respect to the second y-axis). When the LCS
have reached their mature stage at x/D ≈ 5, the advection speed deviates by
roughly 10% from the base velocity. As the LCS decay while travelling further
downstream, they accelerate until their advection speed approaches the am-
bient velocity after x/D ≈ 20. Indicated by a dash-dotted line also the core
vorticity ωp,z(δcore), normalized by its initial maximum value, is evaluated over
the downstream distance in Figure 10.7(b). Compared to the velocity defect
the decrease of the vorticity is more gradual; at x/D = 5 ωp,z still amounts to
50%, and at x/D = 20 to 15%. For an unbounded wake the decrease between
these two downstream positions is around 50% (Hussain & Hayakawa, 1987,
p. 212), whereas in the present shallow wake flow we observe a less rapid de-
crease ωp,z,core(x/D = 20) = 0.35ωp,z,core(x/D = 5). Denoted by ◦ symbols
the mass concentration at the vortex core position, resulting from a continuous
injection into the cylinder boundary layer, is non-dimensionalized by its initial
maximum value. The downstream decrease of cLCS/cLCS,max corresponds very
closely to the decay of the core vorticity.

In Figure 10.7(c) and 10.7(d) we show transverse profiles of the main coher-
ent velocity and of the coherent vertical vorticity with respect to the distance
r = y− δLCS from the vortex core in the right shear layer. Although we do not
intend to give a self-similar description of the LCS here, we normalize r with
the local core distance from the centerline δcore(x).15 The magnitude of the

15 The planar measurements conducted for this study were designed to get more insight
into the wake flow dynamics over the whole spatial extend. Special emphasis laid on
its longitudinal development. In order to observe the behavior of a single eddy or LCS
more closely, we need a higher spatial resolution in order to reduce measurement noise,
and to access also the wake far field characterized by only weakly energetic large-scale
structures. We would expect the decaying LCS to behave in a self-similar way. Making
use of a dynamic threshold definition for QLCS , a more appropriate length scale for the
LCS could be evaluated.
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coherent velocity up, normalized by the undisturbed ambient velocity ua, is
display in transverse cross–sections at different downstream positions. In gen-
eral, we observe velocities, which are significantly higher than the ambient, at
the outer side of the wake (r/δcore < 0). Inside the wake the flow is slower than
the ambient velocity showing its minimum values close to the wake centerline
(r/δcore = 1). The distribution at x/D = 7 (denoted by a full line) is stretched
when compared to the more downstream profiles, which indicates that self-
similarity of the LCS does not hold at this donwstream position (cf. footnote
15). At the more downstream positions x/D = 15, 23, 31 a self-similar velocity
distribution can be obtained for a normalization with a local maximum value,
i.e. with uLCS (x/D). The distribution of the coherent vertical vorticity ωp,z in
Figure 10.7(d) also shows a skewed distribution, but a more gradual decrease
as demonstrated in Figure 10.7(b). The same stretching depending on the lat-
eral scale can be observed. A self-similar vorticity distribution across the LCS
can be expected when employing proper local scales, i.e. a dynamic δLCS (x)
and ωp,z (δLCS).

What kind of descriptive model do we expect for the LCS in shallow wake
flow? As the LCS is initially generated due to severe horizontal shear, the
initial vortex might be approximated by a potential vortex, which is irrotational
save the center with its vorticity singularity. The tangential velocity in such
a vortex is inversely proportional to the radial distance uϑ ∝ 1/r. Initially
having a core of finite vorticity, which does not necessarily has to be a solid-
body rotation with constant vorticity and uϑ ∝ r, this rotational core will
spread into the surrounding irrotational flow. The combination of a solid-body
core rotation with a potential outer vortex is called a Rankine vortex model,
which has a discontinuous transition in uϑ and a jump in ωz. An idealized
model, which omits discontinuities, is the so-called Oseen vortex. As derived
also by Truckenbrodt (1980, pp. 265) this model is capable of reproducing
the time-dependent spreading of the vortex in an unbounded flow.

We should not hope to be able to fully describe the LCS in a vortex street-
like shallow wake using the above mentioned model, because here we are con-
cerned with vortices in a continuous and variable horizontal shear flow com-
bined with a vertical plane shear flow and its dissipating effect due to bottom
friction. Comparing the velocity and vorticity distributions in Figures 10.7(c)
and 10.7(d), we can state that in the vicinity of the vortex, where uϑ → ua,
the flow is irrotational (ωp,z ≈ 0) and strain–dominated. This seems to be true
in the outer regions of the wake as the normalized velocity defect approaches
unity. In the central part of the wake we encounter a significant amount of vor-
ticity, which can therefore be addressed as the LCS region. Not surprisingly,
the maximum ωp,z value is always located at the vortex center defined by Q.
Note the distinct vorticity peak over all downstream positions. Also further
downstream the core vorticity cannot be regarded as constant over the width
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of the LCS, i.e. the vortex core should not be approximated by solid–body
rotation. Furthermore, we observe significant skewness especially in the lower
values of the vorticity distribution. This asymmetry in the low vorticity region
results from the braids connecting adjacent LCS of opposite sense of rotation.
We also observe a significant strain rate in this area. From the evaluation of
the Q values tending to zero and even obtaining positive values in the other
wake shear layer, we do not classify this area neither as a vorticity–dominated
region nor as strain–dominated, but as insignificant, and not to belong to the
primary LCS.

10.2.3 Two–length–scale decomposition of velocity fields

When examining shallow turbulent wake flows, we are confronted with fluc-
tuating velocity fields of clearly two different length scales, namely the low
frequency periodic vortical motion of the quasi 2D large-scale structures and,
by contrast, the high frequency random fluctuation of the turbulent vertically
sheared basic flow. In order to explore the interaction and mutual dependency
of the fluctuations of both length scales, it is appropriate to decompose the
time-resolved velocity data into low and high frequency parts up and ur.

u = up + ur

= {u} + (u − {u}) (10.4)

A Reynolds decomposition into mean and turbulent parts obviously can
not cope with a two-length-scale problem of turbulence. But we can combine
both the Reynolds and the two–length–scale decomposition (10.4) into a triple
decomposition (cf. e.g. Hussain, 1983)

u = U + u
∗

p + ur

= 〈u〉 + {u − 〈u〉} + (u − 〈u〉 − {u − 〈u〉}) (10.5)

Note, that in (10.5) for the time-mean of the phase–resolved averaged flow field〈
u

∗

p

〉
= 0, whereas for the double decomposition (10.4) 〈up〉 = U .

In (10.5), we distinguish between the mean advective flow U and the low
frequency periodic flow field u

∗

p, which implies that the coherent structures
are only small perturbations of a mean flow. But in accordance with Hussain
(1986),

“in many cases the coherent structures are highly dominant. That is,
in many cases they are not perturbations of the time-mean flow: they
are the flow.”

Hussain (1986, p. 351)
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Regarding the mechanism for the generation of a shallow shear instability, this
surely applies for the strongest mechanism, the topographical forcing for ex-
ample in the case of a vortex street-like wake flow. Here, the time-mean flow
can be considered the result of many such structures and their interactions. In
a region occupied by a structure, the entire non-random motion is the coher-
ent structure, and a vortex street-like instability consists of a closed pattern
of interfering LCS. Therefore, we prefer to use a two–length–scale decomposi-
tion (10.4) into low and high frequency parts throughout this work. However,
also this double–decomposition has some constraints, e.g. it cannot address the
evolution of coherent structures with respect to a driving flow or the extraction
of energy by coherent structures from the flow which advects the structures.
Especially when we examine the transport of a scalar quantity like a solute
mass, the triple decomposition leads to fluxes of negative coherent scalar mag-
nitudes. This behavior does merely elucidate, but obscure the physics of the
transport processes. Also from the analytical aspects, there are no benefits
from the triple decomposition of scalar fluxes.

Sometimes we still find it useful and desirable to use a kind of triple decom-
position. To avoid the artificial separation between time-mean and coherent
flow parts, we prefer to divide the flow into the undisturbed base flow and its
deviation due to a perturbation. This decomposition proves especially useful
when investigating the generation and fate of LCS, which are disturbances of
a base flow, e.g. a vortex street-like wake instability induced by an obstacle.
But this distinction is only possible because an undisturbed flow exists and is
known.

To discriminate between both frequency parts a broad variety of signal
analysis techniques can be applied. The phase–resolved averaging procedure
provides an appropriate post-processing scheme to extract the large-scale co-
herent vortical structures from the instantaneous flow based on their individual
cycle periods. The deviation of an instantaneous flow field from its correspond-
ing phase–aligned averaged field is called the random turbulent fluctuation of
the flow. Thus, we set up a narrow, but variable band-pass filter for the co-
herent flow field. The incoherent fluctuating fields result effectively from a
high-pass filtering, since the low-frequency variations are already included in
the phase–resolved averages.

Characterization of coherent flow fields from decomposed data. We
will decompose the velocity vectors with a two-length-scale algorithm. In the
following we will benefit from the analytical properties of the decomposition,
that (i) the time-mean and the phase average of the random fluctuations are
zero 〈ur〉 = {ur} = 0, (ii) the time-mean of the coherent (phase averaged) flow

fields are 〈up〉 = U or
〈
u

∗

p

〉
= 0, (iii) vice versa the phase average of the time-

mean fields are just the time-mean fields, and (iv) the low- and high-frequency
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fluctuations are completely decorrelated, i.e. 〈up ur〉 = 0. For brevity we make
use of the Einstein summation convention16 for all indices except for p and r
denoting the coherent and random parts. Furthermore, we use

D̃

Dt
=

∂

∂t
+ upj

∂

∂xj
(10.6)

for the substantial derivative of a fluid element in the coherent flow field. Of
course the local rate–of–change equals 0 in steady flow, and though the coherent
flow field containing the large-scale wake instability is periodic, the overall flow
is steady.

Applying a double decomposition (10.4) to the Navier-Stokes equations,
yields after taking the phase–average for the coherent and random parts of
continuity and momentum, respectively, (Hussain, 1977, 1983)

∂upi
∂xi

=
∂uri
∂xi

= 0 , (10.7a)

D̃

Dt
upi = −∂pp

∂xi
+

1

Re

∂2upi
∂x2

k

− ∂

∂xj
{uri urj} , (10.7b)

D̃

Dt
uri = −∂pr

∂xi
+

1

Re

∂2uri
∂x2

k

− urj
∂upi
∂xj

− ∂

∂xj
(uri urj − {uri urj}) . (10.7c)

For vorticity and turbulent kinetic energy, the coherent and random parts are,
respectively,

D̃

Dt
ωpi = ωpj

∂uri
∂xj

+
1

Re

∂2ωpi
∂x2

k

+
∂

∂xj
({uri ωrj} − {urj ωri}) , (10.8a)

D̃

Dt
ωri = ωpj

∂uri
∂xj

+ ωrj
∂upi
∂xj

+
1

Re

∂2ωri
∂x2

k

− urj
∂ωpi
∂xj

(10.8b)

− ∂

∂xj
(urj ωri − {urj ωri}) +

∂

∂xj
(uri ωrj − {uri ωrj}) ,

and

D̃

Dt

{
u2
pi

}

2
= − ∂

∂xj
(pp upi) + {uri urj}

∂upi
∂xj

− ∂

∂xj
(upi {uri urj})

+
1

Re

∂

∂xj

{
upi

(
∂upi
∂xj

+
∂upj
∂xi

)}

16 The Einstein summation convention concerns summation over repeated indices, i.e. when-
ever an index occurs twice in a term, a summation over the repeated index is implied,
albeit no summation sign is explicitly written.
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− 1

2Re

{(
∂upi
∂xj

+
∂upj
∂xi

)2
}

, (10.9a)

D̃

Dt

{
u2
ri

}

2
= − ∂

∂xj

{
urj

(
pr +

1

2
u2
ri

)}
− {uri urj}

∂upi
∂xj

+
1

Re

∂

∂xj

{
uri

(
∂uri
∂xj

+
∂urj
∂xi

)}

− 1

2Re

{(
∂uri
∂xj

+
∂urj
∂xi

)2
}

. (10.9b)

In the above equations we find various phase–resolved averaged en-
ergy transport terms. These comprise advection terms like up

(
∂
{
u2
r

}
/∂x

)
,

vp
(
∂
{
u2
r

}
/∂y

)
, up

(
∂
{
v2
r

}
/∂x

)
, and vp

(
∂
{
v2
r

}
/∂y

)
, coherent energy trans-

port terms of incoherent kinetic energy like (∂/∂y) (up 〈ur vr〉), coherent pro-

duction terms like −
{
u2
r

}
(∂up/∂x) or dissipation terms like

〈
(∂ur/∂x)

2
〉
, and

〈(∂ur/∂y ∂vr/∂x)〉. Their spatial distribution over the coherent flow of (or at
least containing) the LCS can be evaluated to get more insight into the physics
of two-length-scale flows. In the following section we will discuss some of these
terms in more detail.

In the kinetic energy equations the second right-hand term denotes the
coherent production of incoherent turbulence, therefore it appears as a source
for the coherent kinetic energy and as a sink for the random kinetic energy.

More detail on this set of double decomposed equations can be found in
Hussain (1983). Hussain (1977, pp. 590) also presented the deduction of the
corresponding triple decomposed equations, which are also briefly discussed in
Hussain (1983).

10.2.4 Dynamics of shallow wakes — fields of coherent and

incoherent properties

Since, in general, properties of wake flows like turbulent kinetic energy, vortic-
ity, divergence, strain, or further derivatives like their production or dissipation
terms are derived from the appropriate velocity fields, we also obtain the coher-
ent parts of these properties not from a phase–aligned averaged decomposition
of these quantities themselves, but we calculate them from the coherent veloc-
ity fields. In the same way, the incoherent or random turbulent parts of these
properties are deducted from the randomly fluctuating velocity fields.

Vorticity. For the identification of large-scale coherent vortical structures
from the phase–aligned re-sampled flow field we apply an eduction scheme
based on the Q value to discriminate the vorticity–dominated flow regions
from the strain–dominated ones. Thus, when we presented the Q distribution
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Figure 10.8. The vorticity computed from a coherent surface velocity field of a vortex
street-like shallow wake flow (series 18_vs06, runs 1) is depicted in gray-scale together with
the threshold value of Q (bold lines) and the velocity vectors reduced by the mean vortex
advection speed. White and black areas indicate high magnitudes of vorticity exceeding the
maximum value noted at the color bar. Local peak values of vorticity coincide with the cores
of the LCS. The vorticity of the mature LCS is torn toward the wake centerline.

in the coherent flow field, we inherently showed distributions related to the
coherent vorticity and to the coherent normal and shear strain rates (cf. Equa-
tion (10.1)).

The vertical component of the coherent vorticity is

ωp,z =
∂vp
∂x

− ∂up
∂y

. (10.10)

Note that like all derived flow properties the coherent vertical vorticity is eval-
uated from the phase–resolved averaged velocity components. It is not meant
to be the phase–resolved average of the instantaneous vertical vorticity field.

Since the Q value is closely related to the vertical vorticity, we omit to
display distributions of coherent vertical vorticity here extensively, but show
just one example distribution in Figure 10.8. Obviously, the loci of maximum
Q coincide with the maxima of the absolute coherent vorticity, regions of high
vorticity magnitude are per definitionem areas of high negative Q. In the out-
ward direction of the wake the vorticity rapidly decreases toward the ambient
coherent vorticity, which is zero on spatial average. Since only small-scale fluc-
tuations exist outside the wake in the bottom shear flow, which are not repre-
sented in the coherent flow field, coherent vorticity has to vanish completely in
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Figure 10.9. The coherent rate of shear strain is displayed in gray-scale for the same flow
conditions as in Figure 10.8. Regions of high magnitude of shear strain coincide with the
regions of low magnitude of vorticity, which is torn away from the vortex cores toward the
saddlepoints.

the ambient flow. From the LCS cores directed toward the wake centerline, we
find a region of lower vorticity with less steep gradients, which is oriented in
the direction of stretching of the LCS, as they are still developing. When the
LCS have established and achieved their final circular shape, the low vorticity
region is oriented normal to the wake centerline, but clearly not in the direction
of the braids. As we can observe from the vector field, vorticity stretches out
from the LCS cores toward the saddlepoints in the shear-dominated regions.

Shear strain rate. Another term adding to the Q value is the horizontal
rate of shear strain sp,xy, which is represented by θ2

2 in (10.1). The coherent
horizontal shear strain rate is expressed as

sp,xy =
τxy
µ

=
θp2
2

=
1

2

(
∂up
∂y

+
∂vp
∂x

)
. (10.11)

We illustrate the distribution of this quantity in Figure 10.9 for the same con-
ditions as used to display ωp,z in Figure 10.8. Pure black or white areas indicate
regions of high rates of shear strain beyond values marked at the color bar.
The local maxima of the shear strain are located in the shear-dominated wake
regions close to the LCS between the vortex cores and the saddlepoints in the
stream lines indicated by the velocity vectors. Here, we find dominating lon-
gitudinal gradients of transverse velocity ∂vp/∂x. These high intensity regions
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coincide with the areas of lower vorticity torn away from the LCS toward the
wake centerline. Although also the squared shear strain rates θ2

2 are weak near
the saddlepoints, they still dominate the squared vorticity ω2, which is almost
zero there, and thus, they establish shear–dominated regions centered at the
saddlepoints.

A second, but weaker maximum of shear strain is located near the outer
boundary of the LCS. This results primarily from the displacement of fluid
due to the vortical structure, which gives rise to transverse gradients of main
velocity ∂up/∂y.

Divergence. The divergence of the flow field is defined as

∇ · u =
∂ui
∂xi

=
∂u

∂x
+
∂v

∂y
+
∂w

∂z
. (10.12)

From the two-dimensional PIV measurement system we obtain horizontal sur-
face velocity fields, thus they only enable us to compute the horizontal parts
of ∇ · u.

For incompressible flow without external sources from continuity reasons
we have ∇ · u = 0. Therefore we can conclude from the divergence of the hori-
zontal velocity field to the vertical gradient of the vertical velocity component,
albeit we are not able to measure the magnitude of this gradient directly.
Knowledge of the flow also in the vertical direction is essential, if we are inter-
ested in the question, whether flow pattern of these LCS are two-dimensional or
three-dimensional. From the coherent velocity fields up we obtain the coherent
horizontal divergence of the wake flow close to the water surface,

∇H · up =
∂up
∂x

+
∂vp
∂y

. (10.13)

The large-scale horizontal divergence computed from the coherent horizon-
tal velocity fields using (10.13) is displayed gray scale–coded in Figure 10.10
for a vortex street-like shallow wake instability (series 18_vs06, runs 1). In
the coherent divergence fields light shading indicates divergent regions with
a magnitude greater than the maximum gray scale denoted at the color bar,
whereas dark shading stands for convergent regions. Figure 10.10(a) shows the
region up to 5 D downstream of the obstacle, where the generation and growth
of the LCS takes place. As expected, we encounter regions of high positive or
negative divergence in the immediate vicinity of the cylinder, which arise from
the distinct 3D motion of the large-scale secondary flow around the cylinder. In
the lee of the obstacle the growing vortical structures in both detached cylinder
shear layers show a divergent surface flow field corresponding to a source of
volume in this plane. Between the alternately separating vortices fluid is intrud-
ing, which establishes a strongly convergent region. As the vortical structures
develop, they maintain their characteristic divergent surface flow field. Thus,
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Figure 10.10. The large-scale horizontal divergence (10.13) computed from the coherent
horizontal velocity fields is displayed gray scale-coded for a vortex street-like shallow wake
instability (series 18_vs06, runs 1). White indicates divergent regions with a magnitude
greater than the maximum gray scale denoted at the color bar, black stands for convergent
regions. In the vortex cores we clearly observe divergence zones at the surface, corresponding
to upwelling flow in the LCS cores. In the region up to 5 D downstream of the obstacle, where
the generation and growth of the LCS takes place, convergence zones are located in the shear-
dominated regions along the braids connecting the LCS. In (b) the mature LCS decay due to
dissipation induced by bottom friction, while they advect further downstream. Convergence
zones outside the LCS now concentrate at the upstream onset of the braids to the LCS and
around the streamline saddle-points of the wake flow vector field, which is adjusted to the
advection speed of the structures here.
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Figure 10.11. An example images (series 38_vs01), also to be evaluated by the PIV
measurement system, illustrates that particles floating near the surface are rearranged by
secondary motion of the flow, though initially they were evenly spread over the whole width
of the upstream flow. Divergent zones within the large eddies are lacking particles, whereas
in the convergent zones the particles cluster.

divergent zones are associated with vorticity-dominated regions of the coherent
wake flow. Furthermore, convergence zones are located in the strain-dominated
areas, they are aligned with the braids connecting vortices of opposite sense
of rotation. In the region of developing LCS the convergence zones form line
sinks of near surface volume. Divergent and convergent regions in the surface
flow fields are related to up- and down-welling flows associated with large-scale
vortices; they are a strong indication for the tornado-like secondary motion of
the LCS.

Figure 10.10(b) illustrates, how the mature LCS decay due to dissipation
induced by bottom friction, while they advect further downstream. In the vor-
tex cores we still observe divergence zones at the surface, corresponding to
sources of volume, i.e. upwelling flow in the LCS cores. Convergence zones,
again, are located outside the LCS along their braids. But now they clearly re-
shape and concentrate near the LCS at the upstream onset of the braid and at
the streamline saddle points of the wake flow vector field, which is adjusted to
the advection speed of the structures in Figure 10.10. As the LCS disintegrate,
also the regions of pronounced positive and negative divergence fade away in
the coherent flow field, leaving only the numerical jitter of the finite differences
scheme.

Divergent surface flow fields due to up- and down-welling motion associated
with large-scale vortices are visualized by floating particles evenly distributed
over the whole upstream flow width as they are used for the PIV measurements.
In Figure 10.11 the accumulation of particles in the convergent regions and
their displacement in divergent regions is obvious. Such secondary flow of large-
scale vortical structures is not restricted to shallow wake flow, but it is a
rather common feature of large eddies in shallow flows. For instance, Dietz
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(2001, p. 25) observed the same secondary motions in large eddies generated
in a shallow mixing layer. Besides the implications of applying a 2D data
acquisition to evaluate a 3D flow, also technically it is not trivial just to get
high-quality information of the surface flow field (esp. an appropriate density
and uniformity in the particle distribution also in the downstream part of the
area of observation).

If we compare the above coherent divergence fields to the time-mean di-
vergence ∇ ·U , we find the coherent divergence being much more pronounced
than the time-mean values. The peak magnitude of divergence occurring in the
core of a LCS exceeds the local time-mean value by far; for the series reported
above, we observe of factor of 20. Obviously the secondary currents, associated
to the LCS of the quasi-periodic flow, are more significant in the phase–resolved
averaged coherent flow field than in the time-mean flow, because such mean
secondary currents, which were also observed by Ohmoto et al. (2002) in a
similar shallow shear instability, are induced by the large-scale coherent vorti-
cal structures of the shallow wake flow. On one hand, this illustrates again that
it is often not useful to distinguish the time-mean flow from the low-frequency
coherent flow. A vortex street-like shallow wake flow is not a steady wake flow
disturbed by large-scale vortices, but it is a periodically fluctuating flow, whose
low-frequency fluctuations is essential to the mean flow.

On the other hand, this secondary motion of the LCS (being a tertiary
motion to the mean flow) has a certain impact on the analysis of the planar
measurements in shallow wake flow. With the presupposition of 2D flow at the
large scales, i.e. no significant alteration of the horizontal flow field depend-
ing on the vertical position, firstly, we are allowed to directly conclude from
the near-surface velocity field to the flow field at an arbitrary depth and also
to the depth-averaged coherent flow. Secondly, from depth-averaged horizon-
tal distributions of mass concentration we characterize the coherent transport
mechanisms, ascribing all deviations to small-scale random processes. Both of
these conclusions we draw from the PIV measurements and from the PCA
measurements, respectively. When analyzing the flow pattern and transport
processes, especially when modelling parts of the transport, it has to be taken
into account that, from the employed planar measuring systems, we tend to
neglect secondary (vertical) motions of the predominantly horizontal coherent
flow.

Turbulent kinetic energy. The turbulent kinetic energy is usually defined
to be half the trace of the Reynolds stress tensor,

k ≡ 1

2

〈
u

′
u

′
〉

=
1

2

〈
u′i u

′
i

〉
. (10.14)

It is the mean kinetic energy per unit mass of a fluctuating velocity field. In
Section 7.1.4 longitudinal TKE distributions have been presented for shallow
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wake flows. With a two–length–scale decomposition we can divide k into its
coherent and random parts kp and kr. Based on a triple decomposition we have

k = k∗p + kr

=
1

2

〈
u∗p,i u

∗
p,i

〉
+

1

2
〈ur,i ur,i〉 (10.15)

The total mean kinetic energy also covers the mean advective kinetic energy,
and yields

ktot = K + k∗p + kr

=
1

2
〈Ui Ui〉 +

1

2

〈
u∗p,i u

∗
p,i

〉
+

1

2
〈ur,i ur,i〉 (10.16)

= kp + kr

As indicated by the third line of the above equation, this quantity can also be
computed immediately from the double-decomposed velocity data.17 Detailed
information about the spectral distribution of TKE along the low- and high-
frequent ranges has been reported in Chapter 7 from LDV measurements. From
PIV measurements—restricted in temporal resolution—it was found that for a
vortex street-like wake instability in the region of fully developed LCS the mean
coherent kinetic energy kp = K + k∗p is much larger than the mean random
kinetic energy, kp/kr ≈ O

(
102
)
. The triple–decomposed mean coherent kinetic

energy k∗p is still one order–of–magnitude larger and amounts to 10% to 25%
of the mean advective energy 1/2 〈Ui Ui〉. These facts illustrate again that the
kinetic energy, which is extracted from the mean flow due to its strong lateral
shearing by the obstacle, is primarily transferred to the large-scale coherent
motion of the LCS.

The phase–resolved averages of the triple–decomposed coherent kinetic en-

ergy k̃∗p = 1/2
{
u∗p,i u

∗
p,i

}
offer a closer look on the spatial energy distribution in

the wake flow. In Figure 10.12(a) we present the phase–aligned coherent kinetic
energy computed from triple–decomposed velocity fields, where we subtracted
the mean undisturbed flow instead of the mean actual flow. That is, in this
figure the coherent kinetic energy is shown with respect to the undisturbed
base flow, which is reasonable, since coherent kinetic energy is extracted from
the base flow near the obstacle. Of course, the highest values of k̃∗p occur in re-
gions with high coherent velocity u

∗

p, which are located in the shear dominated
regions between adjacent LCS. The maximum value are roughly 10% of the
undisturbed advective kinetic energy for mature LCS, but can be more than
50% closer to the cylinder in the near wake, where the LCS are generated. In-
side the LCS the coherent kinetic energy has to be smaller and tending toward

17 The simplified relation between double– and triple–decomposed kinetic energy, i.e. kp =
K + k∗

p, is valid only for the mean kinetic energy, as we benefited from properties of the
decomposition mentioned earlier in this section on page 308.
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Figure 10.12. The phase–resolved averages of the turbulent kinetic energy is divided into
the coherent and random parts using a triple-decomposition. For the coherent kinetic energy
k̃∗

p = 1/2
�
u∗

p,i u∗

p,i

	
displayed in Figure 10.12(a), the mean advective part not of the actual

flow, but of the undisturbed flow was subtracted. Thus, the coherent kinetic energy is related
here to the mean advective undisturbed flow, from which it is extracted. In Figure 10.12(b),

the incoherent or random kinetic energy k̃r = 1/2 {ur,i ur,i} is normalized in the same way.
This small-scale turbulent kinetic energy is concentrated near the cores of the LCS, and it
is usually one order–of–magnitude smaller than the coherent kinetic energy.
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zero. Note that the exact location with k̃∗p = 0 depends on the definition of the
reference mean velocity for the triple–decomposition. Since in Figure 10.12(a)
we use a reference frame moving with the ambient undisturbed velocity Ua
(also for the displayed velocity vectors), vanishing k̃∗p are located a bit outward
from the centers of the LCS.

The incoherent or random kinetic energy kr from the high-frequency 3D
fluctuations does not depend on whether we apply a double– or triple–
decomposition, nor on the definition of a mean advection velocity. In Fig-
ure 10.12(b) we show the phase–resolved averaged random kinetic energy
k̃r = 1/2 {ur,i ur,i} for the same conditions as for the coherent kinetic energy.
As for the mean kinetic energy, also for the phase–resolved averages we observe
significantly lower values of the incoherent part. But contrary to the coherent
kinetic energy, the local maximum intensity is now located close to the center
of the LCS amounting to below 2% of the undisturbed mean advective energy
also in agreement with Hussain & Hayakawa (1987). The highest values of
around 35% decreasing rapidly are found in the generation region of the LCS,
but closer to the obstacle than the highest coherent values. Furthermore, a
comparison of the mean coherent and incoherent parts reveals that the mean
coherent kinetic energy k̃∗p is more than ten times larger. Highest ratios are
found in the developing region of the LCS.

Reynolds shear stress. The phase–resolved averaged coherent Reynolds
shear stress obtained from a triple-decomposed velocity field u

∗

p is given by

τ̃xy,p∗

ρ
= −

{
u∗p v

∗
p

}
. (10.17)

Areas of high magnitudes of −
{
u∗p v

∗
p

}
are arranged symmetrically about the

center of the LCS in a clover–leaf like pattern, which is a straightforward con-
sequence of the coherent velocity field associated with a vortical motion in a
frame advected at ULCS . In Figure 10.13(a) gray–scales indicate the horizon-
tal coherent Reynolds shear stress normalized by the mean advective energy.
Underlying vectors show the flow velocity in a frame following the LCS, bold
isolines of the threshold value QLCS mark the large-scale coherent eddies. The
triple–decomposed coherent shear stresses amount to up to 5% of the mean
kinetic energy, once the LCS have established. By contrast and not presented
here, the double–decomposed coherent shear stresses −{up vp} (containing also
the mean flow components) peak to 40% of the mean advective energy, where
the longitudinal velocity component up produces the larger absolute values and
the transverse component vp controls the sign.

Figure 10.13(b) shows phase–aligned the incoherent Reynolds shear stress
−{ur vr} normalized and presented in the same way as Figure 10.13(a). Com-
pared to the coherent stresses, the values of the incoherent stresses are a full



320 10. Large-Scale Coherent Vortical Structures in Shallow Wakes

0 2 4 6 8 10

−4

−3

−2

−1

0

1

2

3

4

Coherent Reynolds Shear Stress {u
p

∗
 v

p

∗
}

x/D [−]

y
/D

 [
−

]

φ = 1/32 * 2π   thres. level = 0.02

{u
p∗  v

p∗ } 
/ 
U

b2

−0.1

−0.05

0

0.05

0.1

(a) Coherent Reynolds shear stresses −
�
u∗

p v∗

p

	
from triple-decomposed

flow

0 2 4 6 8 10

−4

−3

−2

−1

0

1

2

3

4

Incoherent Reynolds Shear Stress {u
r
 v

r
}

x/D [−]

y
/D

 [
−

]

φ = 1/32 * 2π   thres. level = 0.02

{u
r v

r} 
/ 
U

b2

−0.01

−0.005

0

0.005

0.01

(b) Incoherent Reynolds shear stresses −{ur vr}

Figure 10.13. The coherent and incoherent Reynolds shear stress distributions calculated
from the phase–aligned velocity fields of series 18_vs06, run 1 using a triple decomposition,
are displayed gray-scale coded in Figures (a) and (b), respectively. Vector velocities are
reduced by the mean advection speed ULCS of the coherent eddies indicated by bold lines of
QLCS . Compared to unbounded wake flow, the coherent values are significantly higher, and
the incoherent stresses show additional peak values in the cores of the LCS.
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order–of–magnitude smaller, and peak at 0.5% of the mean advective energy.
Though not very clearly visible, areas of intense random shear stress are aligned
with the braids in the shear–dominated flow regions. Additionally, absolute
peak values of −{ur vr} coincide with the LCS.

Hussain & Hayakawa (1987) observed larger magnitudes of random shear
stress in an unbounded wake flow, e.g. twice as high at the cross–section
x/D = 10. Furthermore, their wind–tunnel measurements indicated the peaks
in −{ur vr} occurring near the saddle-points of the streamlines moving with
the LCS, but did not reveal the high core intensities observed in shallow wake
flows. Eventually, this feature of bounded wakes is associated with the sec-
ondary motion of the coherent flow, which results in an up-welling flow in the
LCS centers. At the water surface, the redirection of the upward flow should
be related to higher small-scale turbulence intensities confirmed earlier in this
section (cf. Figure 10.12), and should therefore also produce higher random
shear stresses in the cores.

Turbulence production. In the equations for the mean advective kinetic
energy 1

2 〈U〉 〈U〉 and for the turbulent kinetic energy defined in (10.14), we
encounter a term

P ≡ −
〈
u′i u

′
j

〉 ∂ 〈ui〉
∂xj

, (10.18)

which is called production of turbulent kinetic energy. It describes the extraction
of mean-flow kinetic energy by the mean velocity gradient working against
the Reynolds stresses and its transformation into turbulent kinetic energy of
the fluctuating velocity field. We can distinguish normal production and shear
production, and yield in the horizontal plane, respectively

Pn = −
〈
u′ u′

〉 ∂ 〈u〉
∂x

−
〈
v′ v′

〉 ∂ 〈v〉
∂y

, (10.19a)

Ps = −
〈
u′ v′

〉(∂ 〈u〉
∂y

+
∂ 〈v〉
∂x

)
. (10.19b)

We can use a two–length–scale decomposition of the flow velocity com-
ponents. Employing a double–decomposition into mean-coherent and random
parts, we obtain the phase–resolved averaged production of random turbulent
kinetic energy by mean-coherent strain, or coherent production of incoherent
kinetic energy,

P̃ = − {ur,i ur,j}
∂ {ui}
∂xj

= − {ur,i ur,j}
∂up,i
∂xj

. (10.20)

In the double–decomposed energy equations the coherent production appears
as a sink term for the large-scale periodic kinetic energy, Equation (10.9a),
and consequently as a source term for the small-scale random kinetic energy,
Equation (10.9b).
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Figure 10.14. The coherent production of random turbulence P̃r using (10.21b) is shown
for a distinct phase–interval (cf. caption of Figure 10.15 for details).

When using a triple–decomposition into mean, coherent, and incoherent
parts, this results in two production terms,

P ∗
p = −

〈
u∗p,i u

∗
p,j

〉 ∂Ui
∂xj

, (10.21a)

P̃r = − {ur,i ur,j}
∂u∗p,i
∂xj

. (10.21b)

Here, P ∗
p denotes the mean production of coherent kinetic energy due to the

mean strain field, whereas P̃r stands for the coherent production of random ki-
netic energy from the phase–resolved averaged flow field. Both of these quanti-
ties are shown in Figure 10.15 for a vortex street-like shallow wake flow (series
18_vs06, run 1). For their normalization we make use of the mean ambient ve-
locity Ua and the longitudinal distribution of the maximum transverse gradient
of the mean longitudinal flow component Smax(x) = maxy(∂ 〈u〉 /∂y). Since
Smax provides high values immediately downstream of the obstacle, quickly de-
creasing toward an almost constant small pedestal value beyond x/D = 5, this
non-linear way to scale the energy production allows to present a wide range
of absolute values down to very low production rates in the area of established
LCS decaying due to bottom friction.

Looking at the coherent production of incoherent kinetic energy P̃r for a
given phase-interval in Figure 10.14, this quantity seems to be aligned with the
braids connecting adjacent LCS. More precisely, at the centerline of the braid



10.2 Characteristic flow properties of large coherent structures 323

0 2 4 6 8 10

−4

−3

−2

−1

0

1

2

3

4

Mean Production of Coherent Turbulence

x/D [−]

y
/D

 [
−

]

0.5 u/u
a

(P
n
 +

 P
s
) 

/ 
(U

b2
 S

m
a

x)

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

(a) Mean production of coherent kinetic energy

0 2 4 6 8 10

−4

−3

−2

−1

0

1

2

3

4

Mean Coherent Production of Random Turbulence

x/D [−]

y
/D

 [
−

]

0.5 u/u
a

〈 
P

n
 +

 P
s
 〉

 /
 (

U
b2
 S

m
a

x)

−0.01

−0.005

0

0.005

0.01

(b) Mean coherent production of incoherent kinetic energy

Figure 10.15. Using a triple–decomposition of the velocity fields, the mean production
terms for coherent and for incoherent kinetic energy, P ∗

p and Pr obtained by applying Equa-
tions (10.21a) and (10.21b) respectively, are displayed gray scale–coded for a vortex street-like
shallow wake (series 18_vs06, run 1). The values of the production terms are normalized non-
linearly by the mean ambient velocity Ua and the longitudinal distribution of the maximum
transverse gradient of the mean longitudinal flow component Smax(x) = maxy(∂ 〈u〉 /∂y).
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we observe an area of negative production, which is flanked on both sides by
regular positive production with a peak area near the onset of the braid at
the LCS. In the surface velocity fields evaluated in this work, the braids are
areas of convergent flow (cf. Figure 10.10), but they are not strictly related
to the shear strain rate (cf. Figure 10.9). Assuming the small-scale incoher-
ent turbulence to be horizontally isotropic, i.e. 〈urur〉 = 〈vrvr〉, it is obvious,
that the horizontal divergence (10.13) influences the normal production Pn,
Equation (10.19a). Evaluated from the given planar measurements in vortex
street-like shallow wakes, the normal part of the coherent production P̃r,n dom-
inates the shear production P̃r,s by far. In the distribution of incoherent kinetic
energy we find high intensities near the cores of the LCS (cf. Figure 10.12),
strongly divergent flow occurs at the same locations. The combination of both
effects results in areas of significant values of negative coherent production P̃r
within the LCS. Similarly, additional positive coherent production of incoher-
ent kinetic energy can be introduced in the convergent regions upstream of the
braids. The phenomenon of transfer of turbulent kinetic energy back to the
coherent flow field has also been observed in large-scale periodic unbounded
wake flows (see Pope, 2000, pp. 179), and was assumed to be related to pair-
ing processes. However, as suggested by the correlation of the divergence and
the negative values of turbulence production, in the present study on shallow
wakes this should be ascribed to the secondary motion of the LCS. Also, no
incident of vortex pairing of large-scale coherent structures has been observed
in the examined shallow wake flows. Since we only obtained measurements
of the surface velocity fields, we do not recommend to expand the observed
surface pattern of negative coherent production to a 2D depth–averaged view
without prior verification. The generation of small-scale turbulence in the LCS
cores may well be a local surface–related phenomenon as may be the subse-
quent transfer of this random kinetic energy into the coherent flow. Finally,
note again, that the cut-off frequency of 7 Hz as well as the dimensions and
mass of the tracer particles prevent a sufficiently high resolution of the small-
scale high-frequency fluctuations. All this might explain, why, in contrast to
our observations, Hussain & Hayakawa (1987) found in an unbounded wake
(ReD = 1.3 · 104) that the coherent shear production Pr,s, combined of Equa-
tions (10.19b) and (10.21b), contributes to about 80% to the total coherent
production Pr = Pr,n + Pr,s. They also located areas of high coherent produc-
tion around the saddle-points in the strain–dominated regions, zero production
inside the vortical structures, and did not observe areas of negative production.

The mean production of coherent kinetic energy, as defined in (10.21a), is
displayed in Figure 10.15 (b). The wake region immediately behind the obsta-
cle, where large-scale coherent structures are born and grow, is characterized
by high production rates of coherent turbulence. In contrast, we observe an
area of significant negative production further downstream of the obstacle,
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where the LCS have already established and are decaying. If we separate the
normal and shear components of this production term (not shown graphically
here), we find that the maximum values of both components are of the same
order–of–magnitude. The shear component P ∗

p,s contributes to the production
of coherent energy only in the area, where the LCS shed from the cylinder shear
layers. Since P ∗

p,s is anti-symmetric to the wake centerline, it is responsible for
the asymmetry of the distribution of P ∗

p in this area. The normal component
P ∗
p,n on the other hand is distributed directly axisymmetric along the wake

centerline. It gives raise to negative production in the area of decaying LCS,
which is aligned in streamwise filaments embedded in positive production. So
P ∗
p,n also redistributes coherent kinetic energy back to the mean flow via mean

normal strain rates, which can only be explained by secondary motions pro-
viding vertical flow to satisfy continuity in horizontally divergent flow fields.

Taking the average of (10.21b) results in the mean coherent production of

random kinetic energy
〈
P̃r

〉
= Pr, which is displayed gray scale–coded in Fig-

ure 10.15(a). It reaches values of the order of about 20% compared to the mean
production of coherent turbulence discussed above. We observe a significant
production around 1.5 ≤ x/D ≤ 5 downstream of the obstacle in the area of
growing LCS, which is generally the dynamically most active region of the shal-

low wake flow. In the area of established decaying LCS
〈
P̃r

〉
decreases toward

zero. Although not explicitly shown here, beyond the immediate vicinity of the
obstacle, the mean coherent production of incoherent turbulence is mainly in-
duced by its mean normal component. Both the random Reynolds shear stress
{ur vr} and the coherent shear strain rate ∂u∗p/∂y + ∂vp/∂x change their sign
during the LCS cycle period (cf. Figures 10.13 and 10.9), and eliminate each
other on average.

In order to clarify the characteristic distribution of the production terms
of both coherent and random kinetic energy, we further evaluate their cross–
sectional averaged distributions shown in Figure 10.16(a). In Figure 10.16(b)
we display the cumulative sum of both quantities, which is for the coherent
and random kinetic energy, respectively,

∫ x

0

1

B

∫ B/2

−B/2
P ∗
p dy ds and

∫ x

0

1

B

∫ B/2

−B/2
〈Pr〉 dy ds .

For the mean production of coherent turbulence P ∗
p marked with a dashed

line we observe a strong peak at x/D ≈ 1.5, where the LCS separate from
the cylinder shear layers. Up to a distance x/D = 3 from the obstacle most
of the kinetic energy is extracted from the mean flow and transferred to the
LCS, as we can also see in the cumulative production. Further downstream
the averaged mean production becomes negative, so we observe a decrease of
P ∗
p in its cumulative plot. Around x/D = 5 we have the highest magnitude of
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Figure 10.16. The cross-sectional averaged mean production of the coherent kinetic energy
P ∗

p (dashed line), and the coherent production of the random kinetic energy Pr (full line)
are displayed in their downstream variation in plot (a). Plot (b) shows the cumulative sums
of both quantities starting at x/D = 0. In their non-normalized forms it is obvious, that
a prominent part of the turbulent kinetic energy of the flow is extracted from the mean
advective flow and incorporated into the LCS during their generation.

negative production, then it tends toward zero. The mean coherent production

of random turbulence
〈
P̃r

〉
, indicated by a full line, also reveals its highest

values in the area of growing LCS, then decreasing toward zero, as the mature
LCS decay. In general, the production of random kinetic energy is significantly
smaller than the production of coherent kinetic energy, e.g. we obtain a factor of
10 for the peak values and a factor of 5 for the cumulative values at x/D = 10.
Finally, we see, that both mean production components vanish, as the LCS
disintegrate. Thus independently of the scale of turbulence, the production
of turbulent kinetic energy is closely related to the existence of large-scale
coherent vortical structures.



11. Mass Transport due to Large Coherent

Structures

In the previous chapter we used the horizontal surface velocity fields obtained
from a PIV measurement system in order to identify LCS, and to describe their
topography during their life from generation to disintegration. We also eluci-
dated the dynamical behavior of LCS while they advect downstream influenced
by bottom friction. Since in all kinds of flow not only the transfer of momen-
tum has to be known, but also the transfer of arbitrary scalar quantities, we
will provide additional information on the transfer of soluble tracer mass (as
an example for a passive and conservative scalar) in a shallow turbulent wake
flow in this chapter.

11.1 Topography indicated by mass concentration

Obviously, since tracer mass concentration has no dynamical significance, it
cannot be used for the identification of large-scale coherent vortical structures,
which were defined in a dynamical manner in Section 10.1.1. Since mass tends
to become trapped in the vortex cores of LCS, high concentration might be an
indicator for LCS, thus such structures are often visualized by introducing a
tracer dye into the flow. In shallow turbulent wake flows, LCS generated locally
near the obstacle dissipate rapidly due to the shallowness-enhanced influence of
the bottom friction. Since these LCS exist only over a short flow distance, tur-
bulent diffusion, though prominent due to the 2D turbulent Schmidt number
being of order of unity1, is not sufficient to completely mix high concentration
LCS fluid into the ambient flow. So, a tracer dye may still show a connected
pattern whereas the vortical motion has long dissipated away. Because of the
high molecular Schmidt number Sc = ν/D, this would even be more pro-
nounced for a laminar plane shear flow. Instead of utilizing mass concentration
for the structure identification, we will clarify, how the transfer of tracer mass
is related to LCS as long as they exist. Thus, we show the influence of the LCS
not only on the mean flow field, but also on the mass transport.

1 Sct = νt/Dt has been evaluated to be roughly 0.5 in the present shallow wake flows (cf.
Section 9.1), and has been reported to be about 0.7 in unbounded wake flows (Pope,
2000).
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Figure 11.1. Phase-resolved averaged mass concentration fields cp (x, y, φ) for a vortex
street-like shallow wake (series 18_vs06, run 1) are displayed for 4 discrete phase angles
φi showing the transport of mass during the generation of LCS. Tracer dye is continuously
injected into the left boundary layer of the obstacle. Its main part becomes trapped inside
the separating LCS, local maxima of concentration are found in the vortex cores. As the
LCS advect downstream, the tracer mixes transversely over the whole wake along the braids
connecting the LCS. During this transfer process the tracer is subjected to small-scale tur-
bulent diffusion.
Color-coded mass concentration in mg/l; contoured Q-values, bold lines indicating LCS.
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11.1.1 Coherent concentration fields

Analogously to velocity vector fields, scalar fields can be triple–decomposed or
preferably double–decomposed into a large-scale coherent and a small-scale tur-
bulent part. We obtain the large-scale coherent concentration part cp = {c} by
conducting the phase–resolved averaging procedure described in Section 10.1.2.
Although no coincidentally sampled velocity and mass data is available from
the planar measurements2, we also want to study the mass transfer in the
periodic, ‘coherent’ wake flow and the mass transport capacity of the LCS.
Therefore, after adjusting the phase lag, both phase–resolved averaged fields
of velocity and of tracer mass are finally cross-correlated.

In order to access the mass fluxes, we will display the coherent concentration
fields together with the appropriate Q value distributions. At this point we
note again that the Q values are computed using the phase–resolved averaged
velocity fields {u}, which represent the large-scale periodic motion of the wake
flow.

Figure 11.1 shows results of the Planar Concentration Analysis (PCA) of
a vortex-street like instability of a shallow turbulent wake up to x/D = 10.
A dye tracer was continuously injected from a point source at mid-depth at
the left upstream shoulder of the obstacle co-flowing into the boundary layer.
With respect to direction and velocity the dye injection was adjusted locally to
the receiving flow to prevent any additional momentum input, thus providing
an iso-kinetic source. Due to the high turbulence intensities in the separating
turbulent boundary layer, the tracer rapidly mixed over the full vertical extent.
The color–coded plots show the phase–resolved averaged concentration fields
cp for four phase–times φi spanning the full cycle in equal intervals of π/2 each.
Additionally, full line contours denote negative Q values indicating vorticity–
dominated regions, where the threshold value QLCS close to 0, marked by a
bold line, divides the LCS from the ambient flow. Shear–dominated regions,
which separate the adjacent LCS of the same orientation, are contoured with
dotted lines. From the combined illustration of mass concentrations and Q
values it becomes obvious that on the left side of the wake the local maximum
values of cp coincide with the local highest negative magnitudes of Q, i.e. the

2 We address this point in more detail in Chapter 3 in the first part of this work dedi-
cated to measurement techniques, which we developed with the intention of evaluating
the large-scale mass transport in shallow turbulent flows. There we also discuss further
improvements of the joint PIV-PCA measurement technique.
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highest mass concentration occurs in the cores of the large coherent vortices.3

The decrease of the concentration within the LCS, as they advect downstream,
has been depicted in Figure 10.6 together with the development of Q and other
characteristic dynamical properties of the LCS. The core concentration c/c0
has roughly the same decay behavior as the core vorticity ωz/ωz,0.

Concerning the mass exchange between both sides of the wake flow it can be
stated that tracer mass injected into the left side of the cylinder boundary layer
is predominately staying in the left shear layer of the wake. In the immediate
lee of the obstacle mass is incorporated into the emerging LCS solely on the left
side of the vortex street. Only a vanishing small amount of mass is advected
by LCS of the opposite shear layer. Still there is a transverse transfer of tracer
mass across the whole wake flow. We already observed the strong stretching
of the LCS in the early stage of its individual life, which is an artifact of the
roll-up and separation process. In the direction of this tearing motion also
mass is torn away from the LCS, and thus, the braids connecting an LCS to
the previous counter-rotating eddy are visualized. These braids do not really
connect the cores of counter-rotating eddies, but they surround the opposite
LCS and span further on to the next adjacent LCS. So the braids connect
LCS of the same sign, thereby bridging the whole vortex street to pass on
the outer side of counter-rotating LCS aligned in between in the other wake
shear layer. Due to this tearing mechanism tracer mass is distributed across the
wake. This is enforced by the bottom friction, which in general acts stronger
in the braids than in the vortex cores because of the higher transverse flow
velocities. From the coherent flow fields obtained from PIV measurements we
know that both the turbulent kinetic energy k̃p and the Reynolds shear stresses
−{up vp} are stronger in the strain–dominated regions, especially in the high
velocity regions between counter–rotating vortices (cf. Section 10.2.4, note that
we presented triple–decomposed values in the associated figures). Also from the
incoherent distributions of turbulent kinetic energy and Reynolds shear stresses
we gain further insight about the mutual dependence of strain– and vorticity–
dominated regions. Both employed velocity measurement systems inherently
bear disadvantages for the examination of incoherent turbulence fields, i.e. the
planar PIV data suffer from their low temporal resolution and their restriction
to the free water surface, whereas the point-wise LDV measurements at discrete
locations on the centerline are lacking the instantaneous spatial correlation. In
order to elucidate the small-scale turbulence and its interaction with the large-

3 Note that by linking the phase–resolved averaged fields of depth–averaged concentra-
tion and surface velocity via cross–correlations, we a priori hypothesized the temporal
co-incidence of the local peak values. It has to be proven with simultaneous c and u mea-
surements that there exists neither a phase-lag nor a phase dilation of one quantity with
respect to the other. In this work there is some justification from the pointwise LDV-LIF
measurements. Still we recommend to examine this question again using an improved
PIV-PCA technique allowing for simultaneous data acquisition.
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scale coherent flow, a more appropriate measurement set-up would have to be
employed.

The concept of the braids can be further clarified, when one imagines a point
source continuously issuing dye tracer into the flow. As the dye is advected in
the flow field, the temporal continuity is translated in a spatial continuity in
a Eulerian frame. So, a connected thread of dye in the wake flow results from
the continuous injection, which can not be broken. As it will be influenced by
diffusive processes (and much more in turbulent flow than in laminar flow), the
threads will tend to diffuse into the ambient and may even be undetectable, but
conceptually they stay connected. Perry et al. (1982) worked on the topog-
raphy of von Kármán vortex streets in unbounded wake flows using a streamline
argumentation. They took a beautiful photograph of a wake flow reproduced
here as Figure 11.2(a), which because of the laminar flow illustrates very clearly
the connected dye threads in a vortex street. In Figure 11.2(b) we present a
view of a vortex street-like shallow turbulent wake, which—despite the strong
diffusivity of this kind of flow—still shows the same threads rolling up around
the outer side of counter–rotating eddies. Using a numerical particle tracking
algorithm we are able also to compute streaklines from the phase-averaged ve-
locity fields evaluated from laboratory experiments. If the incoherent random
velocity fluctuation and thus the small-scale turbulent diffusion is neglected,
streaklines resulting only from the coherent quasi-periodic motion of the LCS
can be obtained, as was already illustrated in Figure 10.3.

11.1.2 Incoherent concentration fields

In order to get information about the mixing and entrainment of ambient fluid
into the wake we could analyze the ensemble rms values of the whole time
series of instantaneous concentration fields. But these are strongly dominated
by the large-scale periodic motions, which we associate with advective trans-
port rather than mixing processes. More insight into the structural mechanisms
of mixing can be obtained, if we evaluate the incoherent fluctuating concen-
tration fields cr separately. As a characteristic property of cr we compute its
standard deviations based on the phase–resolved averaged concentration fields.
We obtain the root phase-mean square values (rpms) crpms of the measured
concentration as

crpms = σ{cr} =
√

{c2r}

=

√{
(c− cp)

2
}

=

√{
(c− {c})2

}
=

√
{c2} − {c}2 , (11.1)

since {
(c− cp)

2
}

=
{
c2 − 2 c cp + c2p

}
=
{
c2
}
− 2 {c cp} +

{
c2p
}

=
{
c2
}
− 2 {c} cp + c2p =

{
c2
}
− c2p =

{
c2
}
− {c}2 .
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(a) Vortex street in plane laminar wake from Perry et al. (1982)

(b) Vortex street-like instability in shallow turbulent wake

Figure 11.2. The topography of LCS in wake flows can be elucidated by continuous dye
injection into the right and left upstream cylinder boundary layers. The top view (a) of a
vortex street in an unbounded plane laminar wake visualized by Perry et al. (1982) clearly
shows streaklines marked by the threads of blue and red dye. Also in turbulent shallow wake
flows the same flow pattern can be observed, as illustrated in figure (b) distorted by an
oblique camera angle inclined against the downstream direction. In contrast to the laminar
wake affected only by molecular diffusion, in the turbulent shallow flow the effect of combined
bottom friction and horizontal shear results in a wide turbulence spectrum which effectively
diffuses the dye tracer and blurs the streaklines. If an infinitely thin thread of tracer could
be visualized, so that we would resolve also the smallest turbulent wiggles, this thread would
not be broken, but remain connected.
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Figure 11.3. Phase–resolved averaged rms mass concentration fields {c}rpms for the same
flow conditions as Figure 11.1 are displayed for 4 discrete phase angles φi spanning a full
cycle at equal phase interval of π/2, and thus show the mixing of mass during the generation
of LCS. Tracer dye is continuously injected into the left boundary layer of the obstacle.
Color–coded standard deviation of mass concentration in mg/l, contoured Q values, bold
lines indicating LCS.
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In (11.1) we used a double–decomposition of the concentration data into pe-
riodic and random parts c = cp+cr, where we associate the periodic ‘coherent’
large-scale fluctuations with the phase–resolved averaged concentration fields.
The random ‘incoherent’ fluctuations due to the 3D small-scale turbulence are
captured within the deviations of the phase–resolved averaged concentrations.
However, the temporal resolution of the measuring device (e.g. 25 Hz for the
employed video camera) works as a low-pass filter and prevents the access of
higher frequency fluctuations up to the micro scales. Therefore the rpms value
of the measured concentration covers only the low-frequency part of the small-
scale turbulence. This low-frequency part, in turn, contains most of the energy
of the fluctuations, therefore the rpms value is suggested at least as a strong
indicator for the random ‘incoherent’ fluctuations.

Figure 11.3 exemplifies such phase–resolved rms values of mass concentra-
tions for the same physical conditions and phase angles as used in Figure 11.1.
The concentration fluctuations are cross-correlated to the LCS indicated by
contour lines of Q values. In these plots we can identify regions of intense mix-
ing, which are connected to the LCS. The most important mixing region is
located near the outer side of the LCS just at the onset of the braid, where
also the opposite coherent streakline folds back. Recalling the velocity fields
we can state, that in this mixing region fresh fluid entraining from the other
side of the wake is engulfed and incorporated into the LCS. A second region of
high mixing is found upstream of the first one also near the outer boundary of
the LCS. While the LCS is travelling downstream, this second region follows
the rotation of the vortex core and moves in front of the vortex toward the
wake centerline. Another filament of intense mixing is encountered, as fresh
fluid intrudes into the wake along the concentration-charged braid close to the
downstream part of the LCS. Besides the identification of these mixing regions
we also recognize areas showing almost no fluctuations. These are the cores of
the LCS as well as the region in the immediate lee of the obstacle, which are
also regions with the highest local magnitudes of mass concentration. The re-
gions of intense mixing are included in the conceptual model for shallow vortex
street-like wake flows in Section 11.1.4.

11.1.3 Gradient of coherent concentration

The local gradients ∂cp/∂xi of the coherent distribution of the mass concentra-
tion shown in Figure 11.1 are presented in Figure 11.4 for the phase–interval
1/32 · 2π. Gray scales indicate the magnitude of the gradient vector ranging
from gray (zero) to white (> 50 % of maximum value in field). At every 4th
nodal point a vector points in the direction of the maximum decrease of the
tracer mass concentration. Thus, the vectors also give the direction of the diffu-
sive mass flow rate, since for the gradient–diffusion hypothesis (cf. Section 11.3)
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Figure 11.4. The phase–resolved averaged distributions of the magnitude of the coherent
mass concentration gradients for the same flow conditions as in Figure 11.1 are displayed gray
scale-coded in g/m4 for a phase angle 1/32 · 2π. Vectors are orientated down the maximum
gradient, and bold lines denote QLCS values to identify the LCS. Also compare this plot to the
appropriate coherent distribution of the incoherent concentration fluctuation characterized
by crpms in Figure 11.1.

one postulates cpup ∝ ∂cp/∂x. Bold isolines indicate the LCS separated from
the shear flow by a threshold value QLCS .

As expected, the maximum values of the gradient ∂cp/∂xi occur around the
cores of the LCS near the LCS boundaries. Since the decrease of the gradient
vector is directed out of the tracer-charged LCS into the fresh ambient, we can
assume the spreading of tracer due to the turbulent diffusive mass flux also to
be orientated outward. Comparing the distributions of the concentration gradi-
ents to planar distributions of further properties, we gain more insight into the
advective mass transport and turbulent mixing in shallow wakes. Large values
of the coherent concentration gradient generally occur at locations, where also
the coherent intensity of incoherent concentration fluctuations reaches its max-
imum. In Figure 11.1 the distribution of the root phase-mean square concentra-
tions crpms indicates this scalar fluctuation intensity, maximum gradients and
maximum intensities coincide remarkably well. Regarding the coherent rate of
shear strain (10.11), we also observe good agreement between areas of high
∂cp/∂xi, i.e. possibly high diffusive mass flow rates, and areas of high absolute
values of ϑ2

2 (cf. Figure 10.9). This coincidence can also be considered as an
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Figure 11.5. A conceptual sketch of a vortex street-like shallow wake flow with predominant
2D LCS. The vortex cores are denoted by � symbols, saddle points of the streamlines are
denoted by ⊗ symbols. Dashed lines indicate the braids connecting counter-rotating LCS
across the wake. Double-lined arrows show the entrainment of fresh ambient fluid into the
wake. Vertically hatched areas on both sides of the braids indicate regions production of
turbulent kinetic energy. Cross-hatched areas indicate regions of intense mass mixing.

indication that at least for the mean and coherent flow fields the gradient–
diffusion hypothesis may hold4, which we will employ to derive an algebraic
diffusion model in Section 11.2 and to parameterize the coherent mass transfer
rates in Section 11.3.

11.1.4 Conceptual model for a vortex street-like shallow wake

A conceptual model that characterizes the dynamics of shallow wakes domi-
nated by 2D LCS can be developed from the flow quantities evaluated from the
laboratory surface velocity and depth–averaged concentration data throughout
Part III of the present study. Two rows of counter-rotating eddies in staggered
arrangement advect downstream to the right in Figure 11.5. The vortex cores
are denoted by � symbols, and arrows indicate the sense of rotation. The
vortices of approximately circular shape are regions of large positive or neg-
ative vorticity values, where the sign reverses among the left and right wake
boundary layers. Neighboring vortices of the same sense of rotation, i.e. located
in the same vortex row, are separated by shear–dominated regions. Therefore,
any merging of large-scale vortices is prevented in vortex street-like wakes. The
centers of the shear regions are the saddle points of the streamlines—denoted
by ⊗ symbols—located nearly symmetrically to the vortex cores relative to the
wake axis.

The vortices in each wake shear layer are connected serially with each other
by so-called ‘braids’ indicated by dashed lines. These braids are torn all across

4 As shown in Section 11.3 for 2D shear flows, the turbulent–viscosity hypothesis (11.20)
and the gradient–diffusion hypothesis (11.19) can be linked through the Reynolds analogy
νt ≈ Dt, i.e. Sct ≈ 1.
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the wake to the back of the counter-rotating eddies and rolled-up into them,
as has clearly been demonstrated by visualization in laboratory flows (cf. Fig-
ure 10.4) and by numerical transport simulations (cf. Figure 10.3). With the
braids mass can be transferred between the wake shear layers and can be in-
corporated in LCS of the opposite shear layer. This result is in contrast to
Hussain & Hayakawa (1987) who excluded cross–centerline exchange in un-
bounded plane wakes. In front of the eddies fresh ambient fluid is entrained into
the wake and transferred between two counter-rotating eddies to the their back
sides, as indicated by double-lined arrows. Hence, also fresh fluid is entrained
across the wake centerline.

Regions of high coherent production of incoherent TKE are located on both
sides of the braids, but clearly separated by the stretched braids themselves.
Coherent counter-flows of ambient fluid entrained from both sides of the wake
frontally collide, thus they firstly sustain the stretching of the braids, and sec-
ondly nourish the small-scale random TKE from dissipation of their coherent
kinetic energy. The production region located along the braid to the outside
of the wake is comparably more active than the inner production region. The
stretched braids show a significantly converging flow near the free surface in-
dicating a down-welling secondary motion in the braids to the backs of the
large-scale eddies. Contrarily, in the cores of the LCS the near-surface flow is
diverging as the result of an up-welling current in the vortex centers similar to
a tornado vortex structure.

Regions of high scalar variance associated with intense mixing are primarily
located close to the LCS in the strain–dominated region. They are found from
the onset of the braids along the vortex boundary to the outside of the wake,
but reaching also in front of the LCS. In these regions the mass-loaded braids
are rolled-up along the outside of the LCS, and provide high gradients of mass
concentration. Here, fresh fluid is entrained tangentially along the outside and
in front of the LCS into the wake. A second, but weaker mixing region is found
at the vortex boundary at the inner onset of the braids.

11.2 Coherent mass transport

11.2.1 Experimental evaluation of coherent mass transport

In the previous sections we presented low-frequency periodic distributions both
of horizontal surface velocities obtained from PIV measurements and of depth-
averaged mass concentrations from PCA for a vortex street-like shallow wake
flow. Though the measurement techniques were not applied simultaneously and
did not even span the same time history of the flow, the characteristic periodic
flow pattern was extracted from the velocity fields and from the concentration
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fields by phase–resolved average re-sampling of the time-resolved data. Subse-
quent cross–correlation enabled us to elucidate the flow topography of LCS and
the associated mixing and entrainment. From the information obtained from
the phase–resolved analysis, we can readily quantify the transfer of tracer mass
within the wake flow. The double–decomposition of u and c into coherent and
incoherent parts, for example, yields the mean specific longitudinal mass flux

〈c u〉 = 〈cp up〉 + 〈cr ur〉 + 〈cp ur〉 + 〈cr up〉 . (11.2)

A triple–decomposition of the longitudinal mass flux has been given by Equa-
tion (7.8) in the context of the combined LDV-LIF measurements.

The first two right-hand terms of Equation (11.2) are the large-scale pe-
riodic, and small-scale turbulent parts, respectively. Though the small-scale
turbulent mass flux is not accessible by the PIV-PCA technique, as applied
in the present study, we know from the combined LDV-LIF measurements on
the wake centerline that the small-scale turbulent axial mass transport rate is
two orders–of–magnitude smaller than the large-scale periodic transport (cf.
Section 7.1.4). As we can observe from the incoherent mass concentration fields
in Figure 11.3, we might encounter regions of high turbulent mass transport
off the wake centerline. In these combined phase–resolved averaged velocity
fields and rms concentration fields, we can identify regions of high incoherent
mass fluctuations, i.e. intense mixing, which are located in strain–dominated
regions of the wake flow, where also coherent production of random turbu-
lence takes place. Still, this does not mean that both these fluctuations are
correlated as to induce a 3D turbulent mass flux in the coherent flow field,
and that such a small-scale turbulent flux is significant also for the mean wake
flow. Furthermore, the cross–correlated fluctuating parts in Equation (11.2) are
small compared to the large-scale transport, as demonstrated from combined
LDV-LIF measurements along the wake centerline in Section 7.1.4. Neverthe-
less, the low- and high-frequency parts do not always have to be de-correlated
in vortex street-like shallow wake instability. However, these questions should
be addressed in more detail using a truly synoptic PIV-PCA with a higher
temporal resolution.

In Figure 11.6 the color-code indicates phase–resolved averaged distribu-
tions of the magnitude of the total mean and large-scale mass flux for two
phase angles with a phase difference of π/2. Underlaid bold lines of QLCS
values and vector fields of phase–resolved averaged velocities, reduced by the
mean LCS advection speed ULCS , show the coherent wake flow. It is obvious
again that the mass transport within the wake is related to the LCS, and mass
is mainly transferred within or close to the LCS. Also in the vortex cores, where
the rotational velocity is small, a high mass flux is observed due to the mean
vortex advection speed ULCS .
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Figure 11.6. The phase–resolved averaged distributions of absolute values of the coherent
specific mass flux {cp |up |} for the same flow conditions as in Figure 11.1 are displayed color-
coded in g/(m2 s) for two phase angles π/2 apart. The appropriate velocity vector fields are
reduced by the mean eddy advection velocity ULCS and bold lines denote QLCS values to
identify the LCS.
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Figure 11.7. The total longitudinal coherent mass flux is obtained from the phase–resolved
averaged combined fields (series 38_vs01) of velocity and mass by lateral integration of the
local longitudinal flux {cp up}. Blue circles and black crosses show the results of two different
evaluation procedures. If only the area covered by the LCS is taken into account (green
squares), the transport within the LCS initially amounts to almost 50%, and decreases over
a distance of about 25 x/D as the LCS disintegrate.

The total longitudinal mass transport rate from the phase–resolved aver-
aged flow fields, evaluated by cross-sectionally integrating the specific longitu-
dinal mass flux {cp up}, is given in Figure 11.7 for a similar vortex street-like
wake (series 38_vs01). The mean large-scale periodic mass flux is denoted by
blue circles and black crosses in Figure 11.7. Green squares show the same
mass flux evaluated only from the LCS areas. In the wake near field almost
50% of the flux takes place inside the LCS, which comprise a fluid volume of
about 5% to 10% of the total wake fluid volume—depending on the definition
of the wake half width δu.

As the LCS advect downstream and decay, the flux fraction within the LCS
decreases, whereas the total flux has to remain constant also far downstream.
This demonstrates the restriction not only of the kinematic effects, but also of
the dynamic influence of the LCS to a downstream distance of 20 to 30 diame-
ters.5 As the LCS are dissipated, their mass is still transported in the coherent

5 Over this distance the LCS directly dissipate their kinetic energy, extracted from the
mean flow at the obstacle, due to bottom friction. No down-cascading could be observed
performing spectral analysis of LDV-LIF data.
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flow field, which is no longer dominated by large-scale vortical motions, but
can now be described by its ensemble mean values.

11.2.2 Numerical Particle Tracking

In the previous section we evaluated the distribution of a solute tracer mass in
a vortex street-like shallow wake. After phase–resolved averaging of the con-
centration fields, and cross-correlating them to the appropriate coherent flow
fields, we calculated the coherent mass fluxes. Instead of employing a rather
complicated combined PIV-PCA measurement technique, which is restricted
to the low frequency coherent flow with the current set-up, we can also think
of using only the velocity fields as obtained by PIV to calculate the associated
mass transport, and consequently to access also higher frequency 3D fluctua-
tions with the aid of an appropriate turbulence model.

Procedure. A numerical particle tracking scheme is introduced
(v. Carmer et al., 2003), in which the wake flow is given by the measured
surface velocity fields instead of numerically solving the equations of motion.
In the instantaneous velocity fields massless artificial tracer floats are intro-
duced, which are passive to the flow and treated as conservative substances
in the mass transport simulation. Nevertheless, they do not necessarily need
to be conservative, but we can also implement time-dependent decay or a
reactive model e.g. depending on the local mass concentration. For more
detail the reader is referred to environmental fluid mechanics textbooks like
Fischer et al. (1979) or Chapra (1996). These artificial floats can be
released into the flow in arbitrary spatial and temporal configurations. We
can simulate point sources or even discretized line or plane sources located
somewhere in the flow field, we can model an instantaneous mass pulse as well
as a continuous mass release at a constant or variable rate.

The objectives of a numerical particle tracking are twofold in the framework
of the present study. On the one hand, we want to elucidate the influences of
different turbulent scales on the mass transport, which—technically speaking—
addresses the influence of different filter bands. Here, we also include dispersive
effects due to depth–averaging. On the other hand, we want to evaluate the
general possibility of inferring the depth–averaged flow fields of momentum and
mass from given surface velocity fields. This question arises from the fact that
especially in the near field of a vortex street-like wake we observed large-scale
flow structures revealing significant secondary currents. Since such structures
that induce additional depth-dependent low-frequency motions can also occur
in other shallow shear flow configurations, this question is of general interest.

Calculation of coherent transport. Since we want to compare the results
of numerical particle tracking simulations to experimental results from the



344 11. Mass Transport due to Large Coherent Structures

0 2 4 6 8 10

−4

−3

−2

−1

0

1

2

3

4

Numeric Floats in Coherent Flow

x/D [−]

y
/D

 [
−

]

φ = 1/32 * 2π Q
LCS

 = 0.02 s
−2

0.5 u/u
a

0 2 4 6 8 10

−4

−3

−2

−1

0

1

2

3

4

Concentration of Numeric Floats in Coherent Flow

x/D [−]

y
/D

 [
−

]

φ = 1/32 * 2π Q
LCS

 = 0.025 s
−2

0.5 u/u
a

n
o
rm

a
liz

e
d
 f
lo

a
t 
c
o
n
c
e
n
tr

a
ti
o
n
  
 c

fl
 /
 c

fl
,0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2



11.2 Coherent mass transport 345

0 2 4 6 8 10

−4

−3

−2

−1

0

1

2

3

4

Numeric Floats in Coherent Flow

x/D [−]

y
/D

 [
−

]

φ = 9/32 * 2π Q
LCS

 = 0.02 s
−2

0.5 u/u
a

0 2 4 6 8 10

−4

−3

−2

−1

0

1

2

3

4

Concentration of Numeric Floats in Coherent Flow

x/D [−]

y
/D

 [
−

]

φ = 9/32 * 2π Q
LCS

 = 0.025 s
−2

0.5 u/u
a

n
o
rm

a
liz

e
d
 f
lo

a
t 
c
o
n
c
e
n
tr

a
ti
o
n
  
 c

fl
 /
 c

fl
,0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 11.8. A numerical particle tracking procedure is applied to the phase–resolved
averaged periodic wake flow field for the same flow conditions as in Figure 11.1. The diffusive
transport and spreading due to small-scale turbulent fluctuations is therefore excluded from
this computation. Numerical floats are continuously released at the downstream left section
of the cylinder perimeter. The upper plots visualize the large-scale advective transport of
these particles for two phase angles φi separated by a quarter of a cycle period. The lower
plots show color-coded the particle concentration discretized to the grid of the flow field and
normalized with the mean initial concentration of the releasing line source.
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PCA, we use the phase–resolved averaged flow fields up as the basis for the
mass transport simulation. Consequently, the diffusive transport and spreading
due to small-scale turbulent fluctuations is excluded from this computation.
For instance, Figure 11.8 shows results from a numerical particle tracking pro-
cedure applied to the phase–resolved averaged periodic wake flow field for the
same flow conditions as in Figure 11.1. Numerical floats are continuously re-
leased at the downstream left section of the cylinder perimeter at a constant
mass flow rate ṁin. Since the periodic flow field is repetitive, contrary to the
instantaneous velocity data we are not restricted in the time domain with the
phase–resolved re-sampled data. Thus, we are able to continuously release mass
into the flow, until a steady state or equilibrium mass transport is established,
i.e. until ṁin = ṁout.

The upper plots of Figure 11.8 visualize the large-scale advective transport
of the artificial particles for two phase angles π/2 apart. The lower plots show
color-coded the particle concentration discretized to the grid of the flow field
and normalized with the mean initial concentration cfl,0 due to the releasing
line source. Dark red indicates normalized float concentrations cfl/cfl,0 of more
than twice the mean initial concentration.6

Since the tracer material is introduced only into the leeward left cylinder
boundary layer, only the LCS of the left wake shear layer are charged with
floats, as we already know from the phase–resolved mass concentration mea-
surements. The numerical floats are not subjected to small-scale turbulent
diffusive processes, so we can observe the remnants of the condensed streak-
lines in the wake flow very clearly. The transverse spreading of floats across
the wake within the braids is a prominent feature of the large-scale periodic
vortex street-like flow, as is obvious from these numerical particle tracking
experiments. Despite the omnipresent small-scale turbulent diffusion in shal-
low turbulent flow, large coherent structures induce a significant amount of
transverse mass transfer, which is associated with the periodic, advective mo-
tion. In the numerical experiments this transverse spreading along the braids
also leads to high concentrations in the opposite shear layer at the onset of
the braids behind the LCS. Since this behavior is not found in the laboratory
experiments, where also turbulent diffusion acts, we can ascribe it either to
the small-scale diffusivity, to bottom friction-induced dispersion due to depth-
averaging, or, at larger scales, to some secondary currents of the coherent flow.

6 For example, a line source releasing 33 artificial floats into an area spanning 4 cells has
a mean initial concentration cfl,0 = 8.25. Due to the representation of the curvilinear
source on an orthonormal grid the initial float concentrations vary slightly at the different
cells containing the source. If the floats, released from a continuous transverse line source,
would be advected by a uniform base flow, the initial concentration of floats would be
maintained (disregarding transverse diffusion). In shallow vortex street-like wake flows
the released floats are concentrated at small areas of the coherent flow field associated
with the LCS.
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The relatively thin braids show strong concentration gradients, along which the
turbulent diffusion can work. Due to this turbulent diffusivity mass is distrib-
uted perpendicular to the braids and transported out of the advective periodic
flow motion. This mechanism may also contribute to prevent accumulation of
tracer mass behind opposite LCS.

Small-scale turbulence modelling. Although the large-scale coherent mo-
tion in the wake flow dominates the mass transfer in the near field, it is not
sufficient to fully explain the redistribution and spreading of mass. To cover
also the small-scale 3D turbulent transport introduced by the incoherent fluid
motion we have to employ an additional small-scale transport model for the
phase–adjusted averaged fluctuations {ur} and {vr}, which should also satisfy
the small-scale shear stress distribution {ur vr}. There is a broad variety of
more or less sophisticated models available, in the present study we exemplify
their application for two simple stochastic and algebraic models.

As a stochastic approach we implemented a Monte Carlo simulation. Here
we assume the 3D turbulent fluctuations to show a Gaussian distribution char-
acterized by its mean and standard deviation. Since the 3D turbulence inten-
sities are not constant, but depend on the coherent flow, we extract the co-
herent distributions of {uri} resolved in the phase-time and spatial domain
from the measured velocity fields. Whereas the mean value per definitionem
equals zero everywhere and at all times, we computed the coherent fields of
the standard deviations σ{uri} (φ, x, y). So, for the numerical floats depending
on position and phase angle we randomly assign an additional small-scale tur-
bulent velocity fluctuation and an associated displacement from a Gaussian

distribution 1/
√

2π σ{uri} exp
(
−1/2

(
{uri} /σ{uri}

)2)
. Since we used the ex-

perimental data to configure the stochastic model, we expect the Monte Carlo
simulation from the coherent flow field to give the same results as the di-
rect transport simulation from the time-resolved flow fields provided that the
Gaussian distributions hold.

The small-scale fluctuations of each tracer particle are determined inde-
pendently in both the longitudinal and transverse direction, with the above
stochastic model by drawing randomly from Gaussian distributions. Since the
fluctuations in both directions are not independent, but correlated through the
small-scale shear stress {ur vr}, a turbulence model has to capture them. In
general, the easiest way is to satisfy the phase–resolved local shear stress for
each individual particle, and not only for the whole ensemble of particles. Thus,
we can model the {ur} fluctuation, e.g. from a stochastic approach, then deter-
mine the transverse fluctuation {vr} from the cross-correlated phase–resolved
averaged fluctuations given by {vr} = {ur vr} / {ur}.

If we think of algebraic models for the turbulent transport, a simple way
would involve a uniform–turbulent–viscosity approach
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− {ur vr} = νt
∂up
∂y

, (11.3)

which is in general an appropriate model in 2D turbulent boundary layer flows
with a predominant main flow and a strong lateral gradient. Obviously, in
shallow wake flow νt = const does not hold in the near field. Instead we follow
the Reynolds analogy in turbulent flow, i.e. Sct = νt/Dt = O(1). If we assume a
turbulent Schmidt number of 0.5 for a shallow VS wake concluded from time-
mean evaluations in Section 9.1, the turbulent viscosity yields νt = 0.5Dt.7

We close this equation by employing a common model for the depth–averaged
turbulent diffusivity, now also including the dispersive effects due to depth–
averaging,

Dt = αup∗ h = α

√
cf
2
up h , (11.4)

where
(
up∗
up

)2
=

cf
2 defines the shear velocity, and α is a constant, which

depends on the geometrical boundary conditions.
The turbulent viscosity thus becomes

νt = SctDt = Sct α

√
cf
2
up h . (11.5)

Following Rutherford (1994) we can estimate the transverse spreading co-
efficient Dty using 0.15 < α < 0.3 in straight channels, 0.3 < α < 0.9 in rivers,
and 1 < α < 3 in meandering rivers. Dty now includes both diffusion due
to 3D turbulence and dispersion due to depth-averaged secondary currents on
the transverse spreading of the wake. Though the dispersive spreading is more
related to the bathymetry and morphology of the flow than to bottom friction
(represented in (11.4) by up∗), (11.4) is still commonly used to estimate the
transverse dispersion. For the near field of a vortex street-like shallow turbu-
lent wake we choose α ≈ 1, we could decrease this value further downstream,
since the LCS disintegrate.

In order to model the displacement of a numerical float due to small-scale
turbulent velocity fluctuations, we can define the deviations from the coherent
flow field as

{ur} = sign

(
∂up
∂y

)√
νt

∣∣∣∣
∂up
∂y

∣∣∣∣ , (11.6a)

{vr} = sign

(
∂vp
∂x

)√
νt

∣∣∣∣
∂vp
∂x

∣∣∣∣ . (11.6b)

7 We will confirm this estimate in Section 11.3 for the large-scale coherent fluctuations. In
unbounded plane wakes Sct ≈ 0.7 has been reported (Pope, 2000).
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These definitions for the turbulent displacement of numeric tracer particles re-
flect the local and phase–time dependent variations of the horizontal flow field.
Obviously, this set of equations, (11.6a) and (11.6b) closed with (11.5), does
not exactly reproduce the random Reynolds shear stress distribution. Satis-
fying Equation (11.3) would require {vr} = {ur} instead of (11.6b); different
weights for both directions could be implemented in addition to represent hor-
izontal anisotrophy of the small-scale turbulence and diffusivity.

In order to cover the more 2D characteristic of the large-scale periodic wake
flow field, instead of (11.3) we can implement another small-scale turbulence
model. In analogy to the viscous shear stress, the Reynolds shear stress is re-
lated to the shear strain rate via the turbulent viscosity (cf. e.g. Vreugdenhil,
1994; Schlichting & Gersten, 1997)

− {ur vr} = νt

(
∂up
∂y

+
∂vp
∂x

)
. (11.7)

The implementation of the above shear stress definition (11.7) is illustrated for
two approaches resulting in two different algebraic models.

For the first solution we start with a definition of the main turbulent velocity
fluctuation given by Equation (11.6a). For this definition the flow is assumed to
be a predominantly longitudinal flow. The easiest implementation of (11.7) in
a numerical transport model is to meet this requirement for the displacement
of each float in each phase interval, then

{vr} = −
νt

(
∂up
∂y +

∂vp
∂x

)

{ur}
. (11.8)

An algebraic model for the displacement of the artificial floats, which is in-
cluded in the numerical particle tracking algorithms, therefore consists of the
equations (11.6a), (11.8), and (11.5).

For the second implementation, following Vreugdenhil (1994, p. 37), in
two-dimensional flow the full Reynolds stresses can be described similar to the
viscous stresses as

ur ur = νt

(
∂u

∂x
− ∂v

∂y

)
, vr vr = −ur ur and

ur vr = −νt
(
∂u

∂y
+
∂v

∂x

)
(11.9)

Using the normal stresses we can derive another formulation for the random ve-
locity fluctuations in the phase–resolved averaged flow field, which also satisfies
the shear stress definition (11.7),

{ur} = sign

(
∂up
∂x

− ∂vp
∂y

)√
νt

∣∣∣∣
∂up
∂x

− ∂vp
∂y

∣∣∣∣ , and (11.10a)

{vr} = −{ur} . (11.10b)
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For the closure of (11.10a) and (11.10b) again we use the turbulent viscosity
evaluated by (11.5).

Comparison of different turbulence closure models. Figure 11.9 shows
the effect of various small-scale turbulence models on the numerical particle
tracking scheme of the coherent surface flow fields. For a fixed phase angle of a
vortex street-like turbulent shallow wake flow (series 18_vs06, run 1) the hori-
zontal velocities up reduced by the mean LCS advection speed uLCS = 0.917ua
are indicated by vector arrows; bold full contour lines indicate the threshold
of the Q value to identify the LCS. Figure 11.9(a) shows the depth–averaged
distribution of tracer mass experimentally obtained from the PCA system (cf.
also Figure 11.1). The solute tracer is injected continuously into the upstream
left cylinder boundary at mid-depth. Values of the coherent mass concentra-
tion are reproduced color-coded using a standardization with its initial value,
i.e. cp/cp0.

For the same phase angle, all the remaining plots show results of the nu-
merical particle tracking procedure. Numerical floats are continuously released
at the downstream left cylinder boundary, as shown in Figure 11.10. Instead
of a single point source it was necessary to introduce the floats from a dis-
cretized line source of length πD/4 to realize initial conditions as observed
from the laboratory experiments (cf. also Figure 11.8). Since the surface PIV
is not capable of resolving the strong 3D flow and the intense high-frequency
fluctuations in the immediate vicinity of the obstacle, the numerical floats do
not spread into the unsteady bubble attached to the cylinder. The transfer of
artificial floats released from a single point source in the cylinder boundary
layer into the large-scale coherent wake flow is depicted in Figure 10.3. More-
over, floats were released all along the downstream perimeter of the cylinder
to simulate two point sources. From this arrangement no significant differences
in the time–mean mass distribution arose compared to a single source release,
followed by an a posteriori superposition of a mirror source. For the mass
transport simulations presented in Figures 11.9(b) to 11.9(f) 33 artificial floats
were continuously released per time step from the line source; about 2,000 to
3,000 floats then had to be tracked simultaneously in the flow field. On a color
scale we show the surface area concentrations cfl (intended to be a measure for
the depth–averaged volume concentrations) of the numerical floats, the field
concentrations are normalized with the equivalent point source concentration
cfl,0.8

8 The total number of artificial floats released from the line source simulating a single
point source is called the ‘equivalent point source concentration’. Float concentrations
due to a line source releasing 33 floats per time step to simulate one point source are thus
normalized by an equivalent point source concentration of 33. Contrarily, in Figure 11.1
concentrations are normalized by the mean initial concentration.
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(a) Depth–averaged coherent concentration
field obtained from PCA
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(b) Numerical particle tracking without a
small-scale turbulence model
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(c) Independent stochastic turbulence mod-
els for ur and vr
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(d) Stochastic turbulence model for ur and
vr using {urvr}
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(e) Algebraic model (11.6a), (11.6b), (11.5)

0 2 4 6 8 10

−4

−3

−2

−1

0

1

2

3

4

Concentration of Numeric Floats in Coherent Flow

x/D [−]

y
/D

 [
−

]

φ = 1/32 * 2π Q
LCS

 = 0.025 s
−2

0.5 u/u
a

n
o

rm
a

liz
e

d
 f

lo
a

t 
c
o

n
c
e

n
tr

a
ti
o

n
  

 c
fl
 /

 c
fl
,0

0

0.05

0.1

0.15

0.2

0.25
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Figure 11.9. Artificial floats are continuously released into the left cylinder boundary
layer of the phase–resolved averaged surface velocity fields. Together with the numerical
particle tracking in the coherent flow we employ different small-scale turbulence models to
realize high-frequency fluctuations of the floats. Plot (a) shows the measured concentration
distribution (series 18_vs06, run 1), (b) a result of the numerical particle tracking solely
of the coherent flow fields, (c) and (d) a result of the numerical particle tracking using a
stochastic 3D turbulence model for ur and vr—in (d) also accounting for {urvr}—, (e) and
(f) using different algebraic turbulence models.
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x
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Ua

release of
artificial floats

Figure 11.10. For the mass transfer simulations using the numerical particle tracking the
artificial tracer floats are continuously released from a discretized line source along the lee-
ward left cylinder boundary. This ensures an initial mass distribution in the left detached
wake boundary layer similar to the experimental observations.

Figure 11.9(b) shows the result of the numerical transport simulation solely
of the coherent flow field without any additional small-scale turbulence model,
as discussed in the previous paragraphs related to Figure 11.8. While the nu-
merical floats advect within the low-frequency periodic surface flow fields (ne-
glecting the turbulent diffusive transport also at the surface as well as the
dispersive effect due to depth-averaging), they tend to accumulate in the con-
vergent surface regions of the wake flow in the braids and especially at the
onset of the braids at the LCS. In Figures 11.9(c) and 11.9(d) with a stochas-
tic turbulence model we also capture the random turbulent fluctuation of the
surface flow to the extent, to which they could be observed with the employed
PIV system. Note that the stochastic model assumes a normal distribution for
the small-scale fluctuations adjusted to the observed phase–resolved averaged
fluctuations σ{uu} and σ{vv}; thus, no further parametrization is needed. The
obtained phase–resolved averaged distribution of floats is expected to be essen-
tially the same as the distributions we would achieve from a numerical particle
tracking relying directly on the time–resolved velocity fields when afterwards
applying a phase–resolved re-sampling procedure to them. Compared to the
independent stochastic modelling of ur and vr in Figure 11.9(c), the correlated
evaluation incorporating {urvr} isotropically for each particle displacement re-
sults in only a small increase of the turbulent diffusion in Figure 11.9(d). Albeit
we can state some improvement toward the experimental results compared to
the solely coherent transport simulation, it is obvious that the measured surface
velocity fields do not allow to conclude for the depth–averaged mass transport
of a shallow turbulent wake flow. Especially in the convectively unstable region
there are effects, which we associate with the secondary currents of the LCS,
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that prevent to derive the mass transport dynamics from the surface flow fields,
regardless whether we use the low-frequency periodic fields or the information
of the time–resolved fields.

To overcome this problem, we have to use other turbulence models cov-
ering also these dispersive effects of the secondary motions in the wake flow.
In Figures 11.9(e) and 11.9(f) we present results gained from surface trans-
port simulations involving the three algebraic models described earlier in this
subsection. These rather simple approaches aim toward simulating the small-
scale turbulent transport together with the dispersive effects captured in the
α coefficient of νt in (11.5). For the transport simulations presented in Fig-
ures 11.9(e) and 11.9(f) νt was estimated using Sct = 0.5 and α = 1.0. As we
can conclude from the presented figures, these algebraic models do not suffice
to incorporate dispersion due to the strongly anisotropic and inhomogeneous
secondary currents, although they might be able to cover dispersion of a plane
near equilibrium shear flow. If we intend to improve the algebraic models, it
is reasonable to evaluate one further approach. Additionally to a 3D turbulent
transport model, we recommend to cover the dispersive effects especially of
the secondary flow induced by the LCS for instance by relating the secondary
transport to the gradients of the surface divergence fields analogously to a
gradient–diffusion model.9 A detailed discussion of the parametrization of the
turbulent diffusivity and the turbulent viscosity via α and Sct is omitted here
for brevity. The value of the turbulent Schmidt number has been obtained
experimentally. Since both parameters appear as factors to the same Equa-
tion (11.5) it would be sufficient to adjust α. Increasing α results in isotropic
enhancement of the small-scale fluctuations and enhanced mass spreading into
the flow. A concentration of floats in the cores of the LCS, as required from
experimental observations, can not be achieved this way.

Comparison of time–mean distributions. Since we also need to quantify
the capabilities of the numerical particle tracking from the coherent wake flow
obtained of surface velocity measurements, we compare characteristic values of
the float distribution with appropriate quantities of measured depth–averaged
mass distributions. Instead of analyzing the phase–resolved averaged concen-
trations, as presented in Figure 11.9, we use the time–mean distributions here.
To characterize the spreading of mass in the wake depending on the down-
stream distance x/D we compute the wake half-width δ, the maximum con-
centration cmax, the centerline concentration cc, the cross–sectional mass M ,
and the shape of the transverse distribution. Figure 11.11 visualizes results

9 We could also employ a common gradient–diffusion model in a simple two–step serial
algorithm, where we first compute the mass concentration from the coherent transport
simulation, then apply a gradient-diffusion algorithm to include further (primarily 3D
turbulent diffusive) transport processes. But we do not expect to solve the difficulties
arising from the secondary currents of the LCS with such an approach.
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Figure 11.11. The distribution of artificial floats calculated from the numerical particle
tracking, based on the coherent surface flow field and employing a stochastic small-scale tur-
bulence model, is compared to the depth–averaged measured distributions of solute tracer
mass (series 18_vs06, run 1). Plots (a) to (e) illustrate the longitudinal development of the
wake half-width δ/D, the maximum concentration cmax/cmax,0, the centerline concentration
cc/cc,0, the laterally integrated mass M/Mout, and the shape of the transverse concentra-
tion distribution c/c0 normalized with initial scales. ◦ symbols denote results evaluated from
laboratory data, whereas + symbols denote results derived from the numerical particle track-
ing. The ordinate is scaled logarithmically. For the transverse profiles bold full lines show
experimental data, and dotted lines show numerical data.
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Figure 11.11. For caption see previous page.

of the numerical particle tracking on the basis of the surface velocity fields
of a vortex street-like shallow wake (series 18_vs06, run 1); to predict the
phase–resolved random turbulence we apply the previously described stochas-
tic approach, where the longitudinal and transverse small-scale fluctuations
are modelled independently. Contrary to Figure 11.9, the release of artificial
floats is realized from a line source along the whole lee-ward perimeter of the
obstacle as to simulate the effect of a symmetric mass injection from two point
sources into both cylinder shear layers. A mirror source of equal strength was
added to the measured time–mean concentration fields, in order to compare
the numerical simulations to PCA measurement data.

In Figure 11.11(a) the half-width δconc of the wake is defined to be the
transverse centerline distance, for which the time-mean concentration in a given
cross–section reaches 1/e of its maximum value, i.e. c(x, δconc) = 1/e cmax(x).
In general, the half width derived from the concentration of the numerical
floats perfectly agrees with the measured depth–averaged distributions. In the
intermediate wake field where LCS are predominant the increase of the wake
half width is mainly due to the 2D coherent flow field, the small-scale turbulent
fluctuations are less important. In the region immediately downstream of the
cylinder (roughly x/D ≤ 2), where the LCS are generated, the flow in the
cylinder wake is 3D, and the transverse spreading is underestimated by the
surface velocity–based numerical particle tracking.

The peak concentration cmax, which is normalized by its maximum initial
value cmax,0 at x/D = 0.5, shows a significantly slower decay than the mea-
sured maximum concentration in Figure 11.11(b). Regardless of the random
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turbulence model or even if any is used, the normalized peak float concentra-
tions reveal the same decrease and and the same deviation from experimental
values. For instance, at x/D = 8 the maximum concentration of the numerical
floats is still about 23% of its initial value, whereas the observed tracer con-
centration has already dropped to cmax/cmax,0 = 6%. We can also observe this
overestimation of the peak concentrations due to the surface particle tracking
in the transverse distributions (cf. Figure 11.11(e)). Consequently and on the
contrary, the normalized centerline concentrations cc/cc,0 are underestimated
in the region of decaying LCS. Due to the restricted resolution of the numer-
ical particle tracking, which is based on the resolution of the PIV algorithm
resulting in a (80 ∗ 64) grid and in 32 phase–intervals φi, considerable scatter
and numerical artifacts occur for low concentrations.

The downstream development of the transversely integrated mass distribu-
tion, M (x) =

∫
(c (x, y) dx dy h) dy, is depicted in Figure 11.11(d). M is stan-

dardized by the average mass in the outflow that is equal to the mass input,
M1 = M (xout) = M0, because of stationarity and assuming no mass retarda-
tion anymore at xout. In general, both the depth–averaged PCA measurements
and the numerical particle tracking simulation agree well in the time–mean
concentration fields. The mean mass retardation in the near wake of the ob-
stacle, obtained from depth–averaged measurements, is represented also in the
simulation using the surface velocity field. However, in the immediate lee of
the obstacle a strong retardation, M > 4M0, is observed, whereas the mod-
elled mass tends to its initial value, M →M0. This discrepancy demonstrates
the limitations of both analysis techniques: on the one hand the tracer dye
injected from a point source may not yet be vertically mixed resulting in an
over-estimation of the actual concentration, and on the other hand 3D flow
effects near the cylinder lead to surface wake velocities that over-estimate the
depth–averaged wake flow.

For the transverse distribution of the concentration in Figure 11.11(e) we
use a normalization of the concentration distribution with its characteristic
initial values. The transverse distance is scaled with the cylinder diameter,
i.e. y/D, and the concentration with its initial centerline value (which is es-
sentially the same as its initial maximum value), i.e. c(x, y)/cc,0. For clar-
ity we extract concentration cross-profiles only at the downstream positions
x/D = 1, 3, 5, 7, 9. From the transverse distributions it is obvious that de-
spite the first profile at x/D = 1 in the LCS generation region, the numerical
float distributions show a much more pronounced bifurcation compared to the
mass distributions. Because of the strong bifurcation, self-similarity can not be
maintained in the simulated transverse concentration profiles of the near wake,
since the transverse concentration distribution not only scales with its maxi-
mum value cmax, but also with its centerline value cc. As already discussed in
Chapter 9, downstream of the LCS generation region in the intermediate and
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far wake the concentration cross–profiles provide a self-similar behavior and a
Gaussian distribution scaled with the wake half-width δconc and the centerline
concentration cc. With the numerical particle tracking the peaks of maximum
concentration are predicted to occur more toward the outer edge of the wake.
Furthermore, the transverse gradients ∂c/∂y are much steeper near the bound-
ary of the wake than observed in the experiments. Also the peak values c/cc,0
are strongly overestimated.

In conclusion, employing a numerical particle tracking scheme to the surface
velocity fields obtained from PIV measurements is a straight-forward choice in
order to access the mass transport in turbulent shallow flows without conduct-
ing synoptic PCA mass concentration measurements. The numerical particle
tracking can only be applied to the low-frequency coherent flow field with the
given PIV equipment. For the 3D random turbulent fields we have to employ a
turbulence model, since we are not able to directly observe the high-frequency
turbulent fluctuations due to lacking temporal resolution of the available PIV
system. It has been shown, that making use of a simple turbulence model cov-
ering the 3D turbulent diffusion and vertical dispersion influences, does not
enable us to correctly derive the spreading of mass within the wake flow field
from the surface velocity fields. The main reason for this is regarded to be
the existence of significant secondary currents associated with the LCS, which
cause surface flow fields to differ distinctly from the depth-averaged flow fields.
Modelling these secondary circulations requires an additional dispersive ap-
proach, which should be addressed in further research.

11.3 Parametrization of large-scale coherent fluctuations

Also for shallow turbulent shear flows we often use a time–mean represen-
tation to describe the main features of such flows. This implies that a stan-
dard Reynolds decomposition of the time–resolved flow fields is appropriate
to cover the turbulence characteristics of the flow. The unstable near fields of
shallow wake flows, and especially of vortex street-like shallow wakes, exhibit
a predominately low-frequency periodic flow pattern superimposed by high-
frequency random turbulent fluctuations. As discussed in Chapter 10, instead
of a Reynolds decomposition it is more convenient to apply a two–length–scale
decomposition using a triple–decomposition (10.5) into time–mean, periodic
and random parts. Since we are interested in the mass transfer u c, which is
not directly accessible with the available planar measurement systems, we use
the phase–resolved re-sampling technique to obtain at least the time–mean
and low-frequency mass fluxes up c. From that, we will explore the possibility
to present a descriptive model for the periodic fluxes based on the time-mean
fields of flow velocity and mass concentration. Especially in the LCS domi-
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nated near field this might still be beneficial, since it clarifies and quantifies
the influence of LCS.

11.3.1 Mean scalar equation

When we employ a triple–decomposition of the velocity and mass concentration
fields, the coherent fields up,i and cp can be written analogously to the Reynolds
decomposition of the time-resolved flow,

up,i = 〈ui〉 + {up,i − 〈ui〉} = Ui + u∗p,i , (11.11)

and

cp = 〈c〉 + {cp − 〈c〉} = C + c∗p . (11.12)

The mean mass flux thus can be decomposed into

〈ui c〉 =
〈(
Ui + u∗p,i

) (
C + c∗p

)〉
= UiC +

〈
u∗p,i c

∗
p

〉
, (11.13)

where the first right-hand term denotes the mean advective flux, and the second
term denotes the low-frequency periodic flux, i.e. it represents the flow rate per
unit area of the mass concentration (or mass per infinitely small volume) due to
the periodically fluctuating velocity field. Here again, the mass concentration
c can be considered as an example for an arbitrary scalar quantity.

The transport equation for mass, or conservation equation for c(x, t), is
written as

Dc

Dt
= Dm∇2c

∂c

∂t
+ ∇ (uc) = Dm∇2c (11.14)

∂c

∂t
+ uj

∂c

∂xj
= Dm

∂2c

∂x2
j

.

Neglecting the small-scale random fluctuation and thus using the triple–
decomposition (11.13) yields after taking the time– and depth–mean (cf. also
the tracer mass conservation (8.24) in the 2D SWE)

∂ 〈c〉
∂t

+ ∇
(
〈u〉 〈c〉 +

〈
u

∗

p c
∗
p

〉)
= Dm∇2 〈c〉

D̄ 〈c〉
D̄t

= ∇
(
Dm∇〈c〉 −

〈
u

∗

p c
∗
p

〉)
. (11.15)

As is evident from the expression for the mean substantial derivative, the
coherent mass fluxes influence the mean mass conservation in a way analogous
to that of the Reynolds shear stresses in the Reynolds equations. Also, the
decomposition results in a similar closure problem. To solve (11.15) we need

to know a priori the coherent mass fluxes
〈
u

∗

p c
∗
p

〉
.
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We can close the transport equations by making use of a model to de-

scribe the large-scale turbulent fluxes of mass and momentum,
〈
u

∗

p c
∗
p

〉
and

〈
u∗p,i u

∗
p,j

〉
respectively. Simple algebraic models involve the gradient–diffusion

hypothesis and the turbulent–viscosity hypothesis, which despite their limita-
tions are valuable concepts discussed in various textbooks (e.g. Pope, 2000,
pp. 358).

The mass flux vector
〈
u∗

p c
∗
p

〉
gives both the direction and the magnitude of

the large-scale turbulent transport of the conserved tracer mass. According to
the gradient–diffusion hypothesis, this transport is down the mean concentra-
tion gradient in the direction of −∇〈c〉. According to this hypothesis, the mean
turbulent diffusivity Dt (x) due to large-scale coherent fluctuation is defined as

〈
u

∗

p c
∗
p

〉
= −Dt∇〈c〉 . (11.16)

Thus, the mean mass conservation equation (11.15) incorporating the gradient–
diffusion hypothesis (11.16) becomes

D 〈c〉
Dt

= ∇ ((Dm +Dt)∇〈c〉) . (11.17)

Similarly, the mean rate–of–strain tensor is related to the Reynolds shear
stress via the turbulent viscosity or eddy viscosity νt (x) given as

−
〈
u∗p,i u

∗
p,j

〉
+

2

3
k∗pδij = νt

(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)
. (11.18)

Again, applying the turbulent–viscosity model allows for the closure of the
mean momentum equations, i.e. the RANS equations.

In the 2D SWE (cf. e.g. Equation (8.32)) both the horizontal mass flux
terms of (11.16) have yet to be modelled in order to solve the mass conservation
equation. Also the evaluation of the turbulent viscosity, albeit easier than for
3D flow, involves three unknowns both in the mean rate–of–strain tensor and
the Reynolds shear tensor. We can approximate the description of the flow
by the 2D turbulent boundary layer equations in some cases, for instance in
unbounded turbulent jets and wakes. These flows are characterized by a mean
velocity predominately in the x direction and variations of the mean quantities
predominately in the y direction. Using an appropriate model for the bottom
friction, this may also apply to shallow turbulent wakes. Thus, the gradient–
diffusion hypothesis reduces to

〈
v∗p c

∗
p

〉
= −Dt

∂ 〈c〉
∂y

(11.19)

and the turbulent-viscosity hypothesis to

〈
u∗p v

∗
p

〉
= −νt

∂ 〈u〉
∂y

(11.20)
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Figure 11.12. The transverse mass transfer rates V C and
�
v∗

p c∗p
	

of a vortex street-like
shallow wake (series 18_vs06, run 1) are calculated from the mean and large-scale periodic
flow, respectively. Downstream of the immediate near field of the obstacle the mean mass
flux is negligible, as there is no significant cross stream velocity. The existing mass transfer
across the wake arises from the low frequency fluctuations associated with the LCS.

These equations, which relate a single covariance to a single gradient, are in
essence definitions of Dt and νt.

11.3.2 Mean fields of coherent mass flux

We want to illustrate the above mass flux model by applying it to the transverse
transport within a vortex street-like shallow turbulent wake. Based on a flow
configuration of series 18_vs06 we continuously introduce solute tracer mass
into the left cylinder boundary layer. Regarding the mean transverse mass
flux, according to (11.13) we can separate the mean advective part V C and
the coherent part

{
v∗p c

∗
p

}
, which are shown in Figure 11.12. Especially in the

region of LCS generation, where the wake width is still small, we observe a rapid
lateral coherent transfer, which is counteracted in part by the mean transverse
spreading. As the mean cross velocity component becomes insignificant more
downstream of the cylinder, the mean transverse mass flux also ceases. Except
for the very vicinity of the obstacle, mass effectively spreads from the left
boundary layer over the whole wake exclusively due to the large-scale coherent
flow. Therefore, the transverse spreading has to be associated to the LCS, that
are generated and decay in this region of the wake flow.

Note that the mass flux is a vector quantity depending on the direction of
the reference frame. Thus, negative values of the transverse mean advective
and coherent flux parts in Figure 11.12 just indicate, that this mass flux is
orientated against the positive y direction. We use a thin full isoline delineat-
ing approximately the zero value to separate regions of positive and negative
transfer rates, i.e. to clarify the direction of the transfer rates.
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Figure 11.13. The transverse turbulent diffusivity of the coherent flow field is evaluated
using (11.19). For the turbulent viscosity we apply the unbounded shear flow approximation
(11.20).

11.3.3 Turbulent diffusivity and turbulent viscosity

Based on its definition in Equation (11.19) we compute the transverse turbu-
lent diffusivity Dty from the coherent transverse mass flow rates and the mean
transverse concentration gradient. Figure 11.13 exemplifies the horizontal dis-
tribution of Dty in a shallow wake flow. For this flow configuration (series
18_vs06) Dty is of the order O(10−3 m2/s). When we apply the common es-
timate (11.4) for the mean flow conditions using α = 1, this results in a value
of the order O(10−4 m2/s). So we strongly underestimate the turbulent diffu-
sion in the near field of the wake, if we use a mean flow approximation in the
presence of LCS. The distribution of the transverse diffusivity is neither homo-
geneous nor isotropic (not shown here). Ideally, for a symmetric flow also Dty

should be symmetrically distributed. In particular, symmetry does not hold
further downstream of the obstacle, but Dty is skewed toward the right side
of the wake. From the current situation of a point source issuing tracer dye
only into the left cylinder boundary layer, the concentrations and its transverse
gradients are lower on the right side, which should also be covered by (11.16).
For the gradient–diffusion hypothesis it is assumed, that the directions of the
mass flux and of the mean concentration gradient coincide. But as cited by
Pope (2000), even for homogeneous turbulent shear flow this assumption does
not always hold. From the present planar measurements we can state, that
there are strong deviations from this prerequisite also for the case of a vortex
street-like shallow turbulent wake flow.

Furthermore, we can also observe regions of negative Dty, which is contra-
dictious to its physical meaning of a spreading rate with the dimension L2 T−1.
As these negative values primarily occur in regions, where the transverse gra-
dient of the mean concentration ∂C/∂y is close to zero, this should be ascribed
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both to physical noise of the PIV-PCA measurements and to numerical noise
of the data processing.10

For the right-side plot of Figure 11.13 the turbulent viscosity is calculated
from (11.20) using the transverse gradient of the main velocity component
∂U/∂y. Also νty is not homogeneously distributed, but compared to Dty it
reveals more symmetry with respect to the centerline. νty is of the same order–
of–magnitude than the transverse turbulent diffusivity, though the values of
νty are slightly below Dty. In the near field of the wake, a turbulent Schmidt
number Sc = νty/Dty ≈ 0.5 appears to be a suitable estimate. Passing through
the far field downstream and approaching the plane equilibrium shear flow,
i.e. the shallow base flow again, we can make another estimate for Sct. The
distribution of the eddy viscosity across the shear layer can be described as
(Nezu & Nakagawa, 1993)

ν̂t = κu∗ h
z

h

(
1 − z

h

)
,

which after depth–averaging yields

νt =
κ

6
u∗ h .

As confirmed by Rummel et al. (2002), the depth–averaged turbulent diffu-
sivity of a plane shear flow can be evaluated using

Dt = 0.15u∗ h

Thus, using the above approximations the turbulent Schmidt number is Sct =
0.46 in a turbulent plane equilibrium shear flow.

10 Small gradients ∂C/∂y result in large Dty, additionally for small gradients, physically
unreasonable changes of sign can occur due to noise. Altogether, this can result in large
negative values of Dty.
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Summary of Part III

Identification of large coherent vortical structures. From field-wise PIV
and PCA measurements the spatial coherence of shallow wake flows has been
investigated. Using an adaptive phase–resolved averaging procedure, based on
the time periods of the individual vortex shedding cycles, the surface velocity
fields and the depth–averaged concentration fields have been decomposed into
large-scale quasi-periodic and small-scale turbulent components. A structure
identification scheme based on the Q values, Equation (10.1), discriminates
vorticity–dominated from shear–dominated flow regions, which allows to educe
large vortical structures from instantaneous flow fields. In the present study
this structure identification scheme has been applied to the quasi-periodic low-
frequent part of the horizontal velocity fields. Hence, the identified large-scale
coherent vortical structures (LCS) are ensemble averages of all individual large-
scale vortical structures observed at a given downstream position in the left
or right wake shear layer. The LCS educed from this procedure ensure a high
degree of both spatial and temporal coherence.

Dynamics of shallow wake flows. The educed 2D LCS in the context of
the large-scale periodic flow field allowed to elucidate the generation and decay
processes of large-scale coherent vortical structures in the near and intermedi-
ate fields of shallow turbulent wake flows. The flow field of vortex street-like
shallow wakes have been examined in an Eulerian and in a Lagrangian frame
moving with the LCS advection speed. The downstream development of the
decaying LCS has been illustrated from flow fields, and quantified in terms
of core position, core vorticity, and advection speed. The dynamic behavior of
VS wakes, namely the interaction of large-scale coherent motion and of ran-
dom turbulence, has also been demonstrated from the coherent and incoherent
parts of flow properties like vorticity, shear strain, divergence, TKE, Reynolds
shear stress, and turbulence production. From the surface velocity fields, con-
vergent fronts have been identified upstream of the braids connecting the LCS,
and convergent regions occurred around the saddle-points. The cores of the
LCS show substantial divergent surface flow fields that clearly indicate the
secondary tornado-like motion of the LCS. It has been demonstrated that a
prominent part of the turbulent kinetic energy of the flow is extracted from the
mean advective flow and incorporated into the LCS during their generation.
This mean production of coherent kinetic energy is restricted to the immediate
near field of the wake, whereas the coherent production of random turbulent
kinetic energy is associated to the interaction of the established and decaying
LCS in the intermediate wake field. Regions of significant coherent production
of TKE have been located at the onsets of the braids and along the downstream
flank of the braids. The topography of shallow VS wakes has been deduced from
the synopsis of the distributions of these flow properties.
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Mass transfer due to large coherent structures. Depth–averaged fields of
tracer mass concentrations have been quantified employing the PCA technique.
The coherent and incoherent parts of the depth–averaged mass concentrations
have been related to the flow dynamics of the large-scale quasi-periodic wake
flow. From the combined phase–resolved averaged velocity and mass fields, the
coherent mass transport of shallow wakes could be evaluated, though not mea-
sured directly. The important role of the LCS also on the transfer of mass has
been illustrated. As much as 50% of the mass transfer took place within areas
associated to LCS, which cover approximately 5% to 10% of the wake area.
Regions of intense mixing have been identified in the vortex street-like wake
flow, and associated with the interaction of the LCS and their self-induced
shear–dominated regions. A conceptual model has been set-up for the region
of mature and decaying LCS in shallow vortex street-like wake flows. The mech-
anism of mass exchange among both wake shear layers and the entrainment of
ambient fluid across the wake have been demonstrated. The parametrization of
the large-scale coherent wake flow in terms of constant values of the coherent
diffusivity and coherent eddy viscosity, as employed for the analytical wake
model in Chapter 8, has been elucidated.

Numerical particle tracking. A numerical particle tracking has been devel-
oped to infer the depth–averaged mass transport from surface velocity fields
obtained by PIV measurements. Therefore, the large-scale coherent flow has
been extracted from the data, and was used to predict the coherent mass
distributions, which did not sufficiently agree with mass concentrations ob-
tained from PCA measurements in laboratory wakes. Stochastic and algebraic
small-scale turbulence models have been implemented in the numerical particle
tracking calculations without satisfactorily improving the results. The trans-
port simulations in the near and intermediate VS wake field with predominant
LCS showed reasonable agreement in terms of the wake half width and the bulk
mass transfer. However, the detailed concentration distribution could not be
modelled accurately; the local maximum concentrations were over-estimated
by far, and did not occur at the cores of the LCS, but at the outer onset of
the braids, where the artificial floats accumulated. This behavior has been ex-
plained by convergent and divergent wake flow regions present in the surface
velocity fields. From the coherent divergence fields secondary motions asso-
ciated with the LCS have be concluded that significantly contribute to the
lateral mass transport. The influence of the tornado–like motion on the depth–
averaged mass spreading strongly differs from the spreading resulting from the
representation of the secondary motion in the surface flow fields.
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The purpose of this project was to characterize the mean flow and turbulence
properties of shallow turbulent wakes induced by a single cylindrical obstacle.
The global and local stability had to be further elucidated and quantified.
Special emphasis was on the mechanisms of generation and decay of 2D large-
scale coherent vortical structures, as well as on their role in the transport of
turbulent kinetic energy and of mass.

12.1 Measurement techniques

To experimentally investigate shallow turbulent wake flows a new shallow flow
facility has been installed at the Institute for Hydromechanics, University of
Karlsruhe. Plane near-equilibrium bottom friction–induced shear flows can be
realized with a horizontal extent of 5.5 m times 13.5 m and with a flow depth
of about 20 mm to 30 mm. Fully automated flow controls and a 3-axial tra-
versing system ensured the necessary accuracy, stability, and repeatability for
the experimental programs.

Due to the large horizontal and small vertical dimensions of the shallow
flow field non-invasive measurements of flow velocities and mass concentrations
could only be conducted from above the flow facility through the free water
surface. Shallow wake flows are multi–scale flows with length scales ranging
from the dissipative scales of random turbulence induced by vertical bottom
shear up to the large scales of quasi-periodic motion of the horizontal wake
flow. In order to satisfy this duality two different optical flow measurement
systems have been employed. The measurement devices for the flow velocities
were commonly available scientific systems, whereas the mass concentrations
were obtained by specially designed or developed systems.

A two-dimensional Laser Doppler Velocimetry (LDV) system has been em-
ployed to observe the horizontal flow velocity components point-wise with high
spatial and temporal resolution as to access also the small-scale 3D turbulent
fluctuations. The monochromatic LDV laser light also excited a fluorescent
dye tracer in order to allow for additional Laser Induced Fluorescence (LIF)
measurements. The optical probe head of the LDV system also received the flu-



366 12. Conclusions and Recommendations

orescent radiation, thus, the LIF was operated in an on–axis mode, which has
never been reported before. An extended LIF attenuation model, ranging well
into the non-linear concentration–irradiance dependency, has been parameter-
ized in order to capture the wide and dynamic spectrum of concentrations
occurring in the wake near– and far–field. The optical arrangement guaran-
teed for a spatial correlation of the LDV and LIF measurements, the temporal
coincidence was ensured by an additional data linking device. The combined
LDV-LIF system allowed for the synchronous measurement of velocity and
mass, and hence, made available also the horizontal mass transport.

The spatial correlation of the low-frequent quasi-periodic wake flow had
to be observed by field-wise optical flow measurements. A standard Particle
Image Velocimetry (PIV) system has been adapted to obtain horizontal veloc-
ity fields close to the free surface (Weitbrecht et al., 2002) with a spatial
and temporal resolution that allowed to access the large-scale motion, but not
the inertial range of small-scale turbulent fluctuations. In order to observe
the field-wise concentrations of a tracer mass a Planar Concentration Analy-
sis (PCA) has been realized. A hydro–optical model for the light scattering
and absorption has been formulated, and has been translated into a conversion
algorithm to obtain depth–averaged mass concentrations from irradiance dis-
tributions observed with a digital video camera. Though PIV and PCA could
not be operated simultaneously, a phase–resolved averaging technique has been
implemented which allowed to observe the mass transport in the low-frequent
periodic flow field associated with the large-scale vortical structures.

A set of complementary measurement series provided detailed information
of a variety of shallow wake flows of the vortex street (VS), unsteady bubble
(UB), and steady bubble (SB) shallow wake stability classes. Hence, a data
base has been provided that can be employed for further data analyses, but
also to validate numerical analysis tools and simulation models.

12.2 Mean characteristics of shallow wakes

A review of the theoretical concepts of the spectral description of turbulence
has been given for classical homogeneous 3D turbulence as well as for quasi-2D
turbulence. The spectral transfer both of turbulent kinetic energy and of a pas-
sive scalar tracer have been addressed in detail. Characteristic scales of length
and time have been stated that delineate the spectral ranges of production and
of diffusion and dissipation.

To analyze the turbulence in shallow wake flows the velocity and mass fields
obtained from LDV–LIF measurements have been triple-decomposed into the
time-mean, large-scale coherent and small-scale turbulent parts using an adap-
tive phase–resolved averaging instead of a low-pass filtering. From the triple-



12.2 Mean characteristics of shallow wakes 367

decomposed data it has been concluded that the large-scale coherent motion
plays a crucial role in the transfer of momentum and mass. Spectral distribu-
tions of TKE and of mass variance have been calculated from the turbulence
measurements in shallow wake flows, which demonstrated the dual spectral
structure of 2D turbulence at large scales and 3D isotropic turbulence at small
scales. The -3 enstrophy cascade of 2D turbulence toward smaller wave num-
bers could be verified, though the complementary inverse energy cascade to
larger wave numbers was absent. Corresponding to the -3 enstrophy cascade,
scalar variance has been shown to cascade down to smaller wave numbers fol-
lowing a -1 power law. On the small scales of 3D turbulence both energy and
mass were found to be transferred through the inertial–convective subrange
following the Kolmogorov and Batchelor -5/3 power laws.

An analytical integral 1D model—including also the effect of bottom shear
stress—has been derived for the self-similar far field of shallow wake flows.
Conservation equations for the standardized fluxes of momentum deficit M∗

s ,
of volume deficit Q∗

s, and of tracer mass Q∗
c have been solved analytically

and numerically. Employing these solutions the downstream development of
velocity deficit u∗sc and tracer mass c∗c along the wake centerline, and of the
wake half widths δu and δγ have been solved. Then, the self-similar transverse
distributions of the velocity deficit u+

s and of the mass c+ followed a Gaussian
distribution. The employed models for the bottom shear stress and for the
lateral entrainment have turned out to be valid only for diminished large-scale
periodic motions. The solutions obtained from the integral far wake model have
been validated by experimental data of integral deficit fluxes of shallow wake
flows.

From the time-mean wake flow fields of various shallow wakes transverse
distributions of the velocity deficit u+

s and of the mass concentration c+ have
been extracted. The mass concentration showed a self-similar and Gaussian
distribution over the full extent of the wake as did the velocity deficit for
most part of the wake. In the immediate wake near-field u+

s deviated from
self-similarity and from Gaussian distribution, and revealed a jet-like flow at
the wake boundaries accompanied by a second inflection point in the outer
transverse profile. From the longitudinal development of the centerline velocity
deficit, of the centerline mass concentration, and of the wake half width, a wake
near field could be distinguished over a downstream distance—normalized by
the integral wake length scale `M—of x/`M = 10 to 20. In the wake near field
the wake could be described using the proportionalities of unbounded plane
wakes, whereas in the intermediate wake field with predominant 2D LCS and
in the passive wake far field the wake spreading diminished.

Experimental data of wake flow measurements have been related to re-
sults of linear stability analysis, and the local stability regions of shallow
wake flows, as predicted by linear stability analysis (Chen & Jirka, 1997;
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Socolofsky et al., 2003), have been identified. In shallow wakes the ab-
solutely unstable and convectively unstable regions were found to be short,
shallow wakes were predicted to be stabilized a short distance downstream
of the obstacle. The transition to the stable flow region at x/`M = O (10)
roughly correlated with the transition between near and intermediate wake
fields. Large-scale vortical structures resulting from the low-frequent pertur-
bations, which are dominant in the intermediate wake field, were found to be
present in the stable wake region.

12.3 Large-scale coherent vortical structures in shallow wakes

From field-wise PIV and PCA measurements the spatial coherence of shallow
wake flows has been investigated. Using an adaptive phase–resolved averag-
ing procedure, based on the time periods of the individual vortex shedding
cycles, the surface velocity fields and the depth–averaged concentration fields
have been decomposed into large-scale quasi-periodic and small-scale turbulent
components. To identify the large-scale coherent vortical structures (LCS) a
structure identification scheme, which discriminates vorticity–dominated from
shear–dominated flow regions, has been applied to the quasi-periodic low-
frequent part of the horizontal velocity fields. The educed 2D LCS in the con-
text of the large-scale periodic flow field allowed to elucidate the generation
and decay processes of large-scale coherent vortical structures in the near and
intermediate fields of shallow turbulent wake flows. The dynamic behavior of
VS wakes, namely the interaction of large-scale coherent motion and of random
turbulence, has also been demonstrated from the coherent and incoherent parts
of flow properties like vorticity, shear strain, divergence, TKE, Reynolds shear
stress, and turbulence production. The topography of shallow VS wakes has
been deduced from the synopsis of the distributions of these flow properties.

The coherent and incoherent parts of the depth–averaged mass concentra-
tions have been related to the flow dynamics of the large-scale quasi-periodic
wake flow. From the combined phase–resolved averaged velocity and mass
fields, the coherent mass transport of shallow wakes could be evaluated, though
not measured directly. The important role of the LCS also on the transfer of
mass has been illustrated. Regions of intense mixing have been identified in
the vortex street-like wake flow, and associated with the interaction of the LCS
and their self-induced shear–dominated regions.

A numerical particle tracking has been developed to infer the depth–
averaged mass transport from surface velocity fields obtained by PIV mea-
surements. Therefore, the large-scale coherent flow has been extracted from
the data, and was used to predict the coherent mass distributions, which did
not sufficiently agree with mass concentrations obtained from PCA measure-
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ments in laboratory wakes. Different small-scale turbulence models have been
implemented in the numerical particle tracking calculations without satisfac-
torily improving the results. From the coherent divergence obtained from the
surface velocity fields secondary motions of the LCS have be concluded that
significantly contribute to the lateral mass transport. The influence of the
tornado–like motion on the depth–averaged mass spreading strongly differs
from the spreading resulting from the representation of the secondary motion
in the surface flow fields.

12.4 Further perspectives

Albeit a number of fundamental questions were not addressed in depth in the
framework of this study—either owe to a lack of time or of finance—, and
remain challenging topics in fluid dynamics research, we want to raise some
points that seem to be of relevance for the transfer of the improved basic
knowledge to applied sciences and engineering applications.

So far, shallow wakes have been treated as disturbances of a uniform base
flow. Global acceleration and deceleration of the base flow is expected to sig-
nificantly alter the stability of shallow wake flows. Due to deceleration of the
ambient flow the wake will be de-stabilized, the generation of large-scale coher-
ent structures can be stimulated, its decay can be diminished. Local deceler-
ation occurs in tidal flows in the coastal environments, advective deceleration
is encountered, for instance, with the gradual expansion of the river banks in
estuaries.

The stability of wake flows can be controlled by manipulating the base
flow advecting the initial disturbance introduced by a single island. Random
or selective enhancement of the turbulence spectrum may stabilize the wake
flow. Random or regular distributions of macro roughness elements, which can
be understood as ripples and dunes at the bottom of riverine or coastal flows,
may stimulate a wake stabilization.

The important role of the 2D LCS on the transport of mass has been demon-
strated in this study. The influence of these large-scale vortices on the sedi-
ment transport and on the bottom erosion has to be further elucidated. The
tornado–like secondary motion of the LCS may further enhance the mobiliza-
tion of sediments and the re-suspension of adhesive constituents. Mixing and
entrainment of fresh fluid, which are of special interest for the transport of
reactive constituents, may change due to the secondary motion of the LCS.

In order to improve the numerical particle tracking for the transport simula-
tion in shallow wake flows, the effect of the secondary motion of the LCS should
be included in a divergence–based closure of the model. The mass transport of
reactive constituents may be implemented in the numerical particle tracking.
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Decay laws may include the time-dependent decay, and the decay depending on
the concentration of the tracer or on the concentration of another constituent.



A. Calculation procedure for spectral density

estimates

In Section 6.1.4 a recipe-like summary of the procedure to calculate spectral
density estimates of random processes was presented briefly. In the following
section this procedure will be applied to the LDV-LIF turbulence measure-
ments in shallow turbulent wake flows.

A.1 Preparation of time series

According to step 1 of the PSD estimation procedure one has to specify the
particular parameter values for the computation of the spectral density distri-
butions for the actual flow configurations and experimental restrictions.

To begin with, we have to estimate the frequency range of interest in shal-
low turbulent wake flows as obtained in our laboratory experiments. Using an
estimate for the Strouhal number St = Df/U of the large-scale wake instabil-
ity to be St ≈ 0.3 ± 0.05, the frequency fD of this global wake instability is
expected to be of the order-of-magnitude O(10−1Hz). Since we are interested
in the energy distribution in the spectral domain to elucidate the turbulent
energy cascading processes, we aim for a frequency band ranging from one
order-of-magnitude below fD up to two orders-of-magnitude above fD, i.e.
f ∈

[
O(10−2Hz) O(101Hz)

]
.

During the LDV-LIF measurements we ensured a data sampling rate of
significantly more than 100 Hz for all measurement series, which enabled us
to resample all the data with a time increment M t = 0.01 s. The Nyquist
frequency, being the highest frequency obtained from the PSD, thus becomes
fN = 50Hz, reliable estimates of the spectral density will range up to maybe
half the Nyquist frequency. So we expect our frequency band to range up to
fhigh ≈ 25Hz.

Since the lowest frequency within the frequency range of the PSD should
be significantly lower than the frequency of the wake instability, for exam-
ple flow/fD . 1/2, we choose the required length T ∗ of each re-sampled
data sequence to be the reciprocal of half the lowest frequency. Exclud-
ing any padded zeros, the length of a single re-sampled data block yields
T ∗ ≈ 1/

(
0.52fD

)
= 40 s, if we assume fD = 0.1Hz.
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We set the maximum effective band width to Be = 0.5 fD in order also to
resolve a downstream frequency variation of the global wake instability due
to merging of large-scale vortical structures. For a 0.1 Hz wake instability
the required frequency resolution of the PSD is Be = 0.05 Hz. Assuming a
maximum turbulence intensity of 25 % or 50 %, the required length Tres of
the re-sampled data blocks becomes Tres ≈ (σu/〈u〉)−2/0.05 Hz ≈ 320 s or
Tres ≈ 80 s, respectively. To ensure the required low frequency resolution in
the PSD, we realize a block length T = max(T ∗, Tres) = Tres.

In order to perform the FFT of the re-sampled data sequences, the number
of data points contained in each data block has to be an integer power of 2.
Instead of adding an appropriate number of zero values to the data blocks, we
elongate the time T of each block to such a duration, that the FFT requirement

lg2(T/ Mt) = n, n ∈ N

is met. For a global wake frequency fD = 0.1Hz we would extend T from 80 s
to 81.92 s making use of N = 213 observations in each data sequence.

Finally, we determine the width of the band-averages applied to the block-
averaged PSD. Therefore, an odd number (2n+ 1) of adjacent spectral esti-
mates has to be averaged in such a way that the required frequency resolution
Be is still satisfied. The width of band-averaging is given by (2n+ 1) = BeT =
40.96 ≈ 39.

A.2 Windowing and smoothing

In order to increase the statistical reliability of spectral estimates (i.e. their
degrees of freedom), we have to conduct some sort of averaging or smoothing
with the spectral estimates. The smoothing can be applied directly to the time
series data (time domain weighting), but is most commonly applied to the
spectral estimates (frequency domain smoothing). Smoothing can be applied
to the entire record to slightly increase the number of degrees of freedom per
spectral estimate. Here, as in most practical applications, smoothing by band-
averaging is applied to a series of short overlapping blocks partitioned from
the full time series. We then ensemble average the smoothed spectra from each
segment (i.e. block averaging) to increase the number of degrees of freedom
per spectral estimate. The more smoothing we do, the narrower the confidence
limits and the greater the reliability of any observed spectral peaks. The trade-
off is a loss of spectral resolution and longer processing time.

A.2.1 Time domain weighting

In step 2 of the PSD computation procedure we split the full time series of the
re-sampled data into several shorter block employing a filter window. Instead
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of using a rectangular window, we choose a more appropriate filter function
with respect to the FFT conducted with the shorter data segments.

A window is a convolution function applied to finite observations or their
Fourier transforms to minimize so-called leakage in the spectral domain.
Weighting in the time domain and smoothing in the frequency domain are
adjoint Fourier functions. A window is applied to the finite data series to re-
duce the effect of the discontinuities at the boundaries of the observational pe-
riod, since few harmonics will fit exactly into the partitioned data blocks. Such
discontinuities are responsible for spectral contributions or leakage over the
entire estimates, since spectral energy at frequencies higher than the Nyquist
frequency is folded back into the spectral estimates of the lower frequencies. In
the time domain, the windows w(t) are applied to the data as a multiplicative
weighting; the windowed data φw(t) are attenuated to zero smoothly at the
boundaries, so that the periodic extensions of the data are continuous. In the
frequency domain, the value Φw(f) in the convolution (generally denoted by
∗) at a particular frequency f is the sum of all the spectral contributions Φ(f)
at each f weighted by the window W (f) centered at f0 and measured at f .

φw(t) = φ(t) w(t)

⇐⇒ Φw(f) = Φ(f) W (f) =

∫
Φ(ν)W (f − ν)dν,

and for finite discrete time series

φw(tk) = φ(tk)w(tk)

⇐⇒ Φw(fk) = Φ(fk) W (fk) =
N−1∑

i=0

Φ(fi)W (fk − fi).

Concerning the shape of the window function the simplest function is the
rectangular (or box-car) window w(tk) = 1 for 0 < tk < T and w(tk) = 0
otherwise. The rectangular window extracts a data block of length T from a
longer, even indefinite time series. Due to the discontinuous boundaries leakage
of spectral energy poisons the spectral estimates. In this sense the FFT of a
finite time series is the result of a convolution of the FFT’s from the indefinite
data series and from the rectangular window function. Beside this omnipresent
basic window, there exist various data windows or tapers ranging from the
classic Bartlett, Hann or Hamming window, to more sophisticated windows
such as Kaiser-Bessel or Dolph-Chebyshev. The variety of these windows is
discussed in text-books on digital signal analysis, see for instance Brigham
(1997, pp. 280) and Kammeyer & Kroschel (2002, pp. 201) for more detail.

Applying a weighting function to a data time series means to dampen part
of the fluctuations especially near the edges of the filter, i.e. part of the energy
contained in the fluctuations is dampened away. Since we want to retain the
true amplitudes of the Fourier transformed windowed data Φw in order to get
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its true energy distribution in the frequency domain, the Fourier transformed
windowed data has to be amplified. This amplification factor depends on the
chosen window function and is given by

awndw =

(
1

N

N−1∑

k=0

w2
k

)1/2

(A.1)

Since we are interested in the spectral densities, we can simply multiply the
PSD by the squared amplification factor a2

wndw.
Depending on the particular objectives of the examination, we apply one

out of two selected weighting functions for the spectral analysis of the pointwise
LDV-LIF data throughout this work. We will briefly discuss both functions,
the cosine window and the Kaiser-Bessel window, in comparison to a box-car
or rectangular window.

The so-called cosine taper is given here by

w (k Mt) =





1
2

(
1 − cos 10πkMt

T

)
, 0 ≤ k Mt ≤ T/10

1 , T/10 < k Mt < 9T/10
1
2

(
1 + cos 10π(kMt−9T/10)

T

)
, 9T/10 ≤ k Mt ≤ T

(A.2)

The main purpose of this kind of window is to reduce the effects of the
boundary discontinuities of the rectangular window. Therefore, the end parts
of a rectangular weighting functions are smoothly brought to zero using cosine
functions (cf. Figure A.1(a), left plot). In Fourier space, with increasing fre-
quency shift the cosine window shows a significant attenuation in the side-lobes
compared to the rectangular window (cf. Figure A.1(a), right plot). As can be
clarified from the convolution of both the Fourier transformed window and
data series, less energy is folded back into the finite spectral domain located
near the main-lobe. Indicated by the -3 dB bandwidth of the main-lobe, from
the rectangular window the advantage of a narrow main-lobe is retained, as
is the drawback of an only weak attenuation of the first side-lobe (of only -13
dB).

The Kaiser-Bessel window was rated the “top performer” in a com-
parative study of many different classical types of windows reported by
Emery & Thomson (1998, pp. 448). Its main advantage among others is,
that it has a high equivalent noise bandwidth, since the first side-lobes are
greatly attenuated and the amplitudes of the farther side-lobes asymptotically
decrease. The trade-off is an increased main-lobe width for reduced side-lobe
levels. In the time-domain the weighting function is defined as the zeroth-order
modified Bessel-function I0 of the first kind normalized by its center value.

w (k Mt) =
I0 (παΩ)

I0 (πα)
, for 0 ≤ |k Mt| ≤ T/2 (A.3)
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(b) Kaiser-Bessel window function (A.3) for α = 2.0 and 3.0

Figure A.1. The window functions, as they are implemented in the spectral analyses pre-
sented here, are exemplified for N = 32 weights. On the left-hand side the multiplicative
filters w (k Mt) are shown in the time domain. The plots on the right-hand side illustrate
their normalized Fourier transforms |W (ωk) |/W (ω0) for the convolution with the Fourier
transformed data series. (a) The cosine window function using (A.2) resembles a rectan-
gular filter window, whose edges show a smooth fall-off to zero. In Fourier space, the cosine
window shows a significant attenuation in the side-lobes with increasing frequency shift com-
pared to the rectangular window. - (b) The Kaiser-Bessel window function (A.3) shows
steeper flanks and a more narrow filter for the higher Bessel parameter α = 3.0 in the time
domain. In the frequency domain, compared to the weights with α = 2.0 this results in an
even more reduced level of the first side-lobe at the cost of an even broader bandwidth of
the main-lobe.

where Ω =
√

1 − (2k Mt/T )2 in the argument of the Bessel function, and

I0 (x) =
∑∞

n=0

[
(x/2)n

n!

]2
is the Bessel function with πα the parameter in the

Bessel argument with typical values 2.0 ≤ α ≤ 3.5.
The modified Bessel function can be approximated for |x| ≤ 3.75 with

Z = (x/3.75)2 by

I0 (x) =
[({[(

4.5813 × 10−3Z + 3.60768 × 10−2
)
Z

+ 2.659732 × 10−1
]
Z + 1.2067492

}
Z (A.4)
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+ 3.0899424)Z + 3.5156229]Z + 1.0

and for |x| > 3.75 with Z = 3.75/|x| by

I0 (x) =
exp |x|√

|x|
[({[({[(

3.92377 × 10−3Z

− 1.647633 × 10−2
)
Z + 2.635537 × 10−2

]
Z

− 2.057706 × 10−2
}
Z + 9.16281 × 10−3

)
Z (A.5)

− 1.57565 × 10−3
]
Z + 2.25319 × 10−3

}
Z

+ 1.328592 × 10−2
)
Z + 3.9894228 × 10−1

]

Figure A.1(b) illustrates the Kaiser-Bessel weighting function for α = 2.0
and 3.0 for N = 32 weights; the dampening effect near the edges of the filter
is much more gradually than for the cosine taper. In the frequency domain
the Kaiser-Bessel window provides a strong attenuation of the first side-lobe of
-45 dB and -70 dB, respectively, and also a further decrease of the side-lobes
with the growing frequency shift (cf. right plot of Figure A.1(b)). Thus, com-
pared to the box-car window or to the cosine window, the leakage of energy
into the side-lobes is dramatically reduced, the representation of the energy
cascading processes in the spectral density distribution can be expected to be
more reliable than in the case of a cosine taper. The main drawback of the
Kaiser-Bessel window is its increased frequency bandwidth of the main-lobe in
terms of frequency bins. Therefore, we loose spectral resolution of predominat-
ing frequencies in the data also for a high signal-to-noise ratio.

In conclusion, the spectral density distribution of cosine tapered data may
still carry a significant amount of energy in the higher frequencies, which for an
inadequately low Nyquist-frequency is folded back into the PSD. The side-lobe
attenuation of the Kaiser-Bessel window can provide much better performance
in the higher frequencies. Contrarily, due to the extended width of the main-
lobe the Kaiser-Bessel weighting function tends to smear out lower frequencies,
whereas the cosine taper offers a distinct representation of a pronounced main
frequency in the frequency spectrum of a data series.

A.2.2 Frequency domain smoothing

After having transformed the partitioned data into Fourier space in step 3 of
the PSD computation procedure, in step 4 we evaluate their spectral estimates
and apply further smoothing to the PSD.

Instead of computing the Fourier transform of a whole time series with N ′

elements, the time series can be divided into kbl shorter blocks of N elements
each. Using the Fourier transforms of these data blocks, the spectral estimates
of the whole series can be evaluated by averaging the corresponding frequency
bins of the PSD of each short data series. This kind of smoothing of the spectral
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density is usually called block-averaging. Because of the shorter time intervals
of the individual data blocks, the lowest available frequency flow of the signal
FFT increases compared to flow of the FFT from the full data series. On the
other hand, if we are able to obtain the same frequency range also from the
shorter data blocks, than as a trade-off we will lack frequency resolution, when
Fourier transforming only the partitioned blocks.

When we apply a window function like a Kaiser-Bessel window (A.3) to
the (partitioned) data series prior to the FFT, data points at the edges of
the filter will have less impact on the spectral estimates than points near the
center of the filter. In order to compensate for this filter effect and give a more
uniform weighting to all data points, usually the data blocks are extracted
from the full time series with an overlap of 30% to 50%, i.e. the last 0.3N
to 0.5N data points of a data block are identically equal to the first data
points of the consecutive block. To select an appropriate overlap percentage,
we have to consider the fact that due to the overlap we induce some correlation
among the spectral estimates of the individual blocks. For a filter window
with a pronounced central weighting (e.g. Hann, Hamming, or Kaiser-Bessel),
adjoining data blocks with an overlap of 0.5 or even higher can be regarded as
independent time series for spectral analysis. The LDV-LIF data processed for
this examination are weighted either with a cosine taper (A.2) and an overlap
of 10% or using a Kaiser-Bessel window (A.3 with α = 3.0) and an overlap of
50% before calculating the spectral estimates.

Another way of smoothing in Fourier space is to apply a so-called band-
averaging procedure. In individual or block-averaged spectral density dis-
tributions, adjacent frequency bands are averaged together, for instance a
band-average of width 3 of the spectral estimate is defined as S̄φφ(fi) =
1/3 [S(fi−1) +S(fi) +S(fi+1)], S̄φφ(fi+3) = 1/3 [S(fi+2) +S(fi+3) +S(fi+4)],
and so on. Obviously, the band-averaging procedure reduces the frequency res-
olution of the PSD, since adjoining frequency bins are combined. Therefore, the
required band width Be has to be lower than the initial frequency resolution
of the FFT from the individual data series.
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